An Assessment of Forestry Best Management Practices in North Carolina, 2012-2016

Appendix B: Sample Size and Confidence Intervals for BMP Implementation Data

Prepared by: Water Resources Branch North Carolina Forest Service North Carolina Department of Agriculture and Consumer Services

Point of Contact:
Alan Coats
Forest Water Quality Senior Specialist
919-857-4855

alan.coats@ncagr.gov

October 2017

Table of Contents

Harvesting. Controlling Nation	
Harvesting: Controlling Runoff	10
Harvesting: Capturing Sediment	14
Harvesting: Logging Systems	16
Harvesting: Rehabilitation of the Project Site	17
Harvesting: Skid Trails	
Harvesting: Wetlands	21
Chemicals, Fluids, and Solid Waste	27
Roads and Access	27
Stream Crossings	31
Streamside Management Zones (SMZs)	
Site Preparation and Reforestation	41
Fire Management	45

List of Tables

Table 1. Percent Implementation of BMPs for Controlling Runoff by Region	1
Table 2. Sample size and 95% Confidence Intervals for Implementation of BMPs for Controlling Runoff by Region	1
Table 3. Percent Implementation of BMPs for Broad-based Dips by Region	1
Table 4. Sample size and 95% Confidence Intervals for Implementation of BMPs for Broad-based Dips by Region	2
Table 5. Percent Implementation of BMPs for Cross-Drains by Region	3
Table 6. Sample size and 95% Confidence Intervals for Implementation of BMPs for Cross-Drains by Region	4
Table 7. Percent Implementation of BMPs for Inside Ditchlines by Region	5
Table 8. Sample size and 95% Confidence Intervals for Implementation of BMPs for Inside Ditchlines by Region	5
Table 9. Percent Implementation of BMPs for Insloping, Outsloping, and Crowning by Region	6
Table 10. Sample size and 95% Confidence Intervals for Implementation of BMPs for Insloping, Outsloping, and Crov	wning by
Region	6
Table 11. Percent Implementation of BMPs for Turnouts by Region	7
Table 12. Sample size and 95% Confidence Intervals for Implementation of BMPs for Turnouts by Region	7
Table 13. Percent Implementation of BMPs for Waterbars by Region Error! Bookmark not	t defined.
Table 14. Sample size and 95% Confidence Intervals for Implementation of BMPs for Waterbars by Region	9
Table 15. Percent Implementation of BMPs for Capturing Sediment by Region	10
Table 16. Sample size and 95% Confidence Intervals for Implementation of BMPs for Capturing Sediment by Region	10
Table 17. Percent Implementation of BMPs for Brush Barriers by Region	10
Table 18. Sample size and 95% Confidence Intervals for Implementation of BMPs for Brush Barriers by Region	10
Table 19. Percent Implementation of BMPs for Sediment Pits by Region	11
Table 20. Sample size and 95% Confidence Intervals for Implementation of BMPs for Sediment Pits by Region	11
Table 21. Percent Implementation of BMPs for Silt Fences by Region	t defined.
Table 22. Sample size and 95% Confidence Intervals for Implementation of BMPs for Silt Fences by Region	12
Table 23. Percent Implementation of BMPs for Straw Bales by Region	13
Table 24. Sample size and 95% Confidence Intervals for Implementation of BMPs for Straw Bales by Region	13

Table 25	. Percent Implementation of BMPs for Decks by Region	14
Table 26	. Sample size and 95% Confidence Intervals for Implementation of BMPs for Decks by Region	15
Table 27	. Implementation of BMPs for Logging Systems by Region	16
Table 28	. Sample size and 95% Confidence Intervals for Implementation of BMPs for Logging Systems by Region	16
Table 29	. Implementation of BMPs for Rehabilitation of the Project Site by Region	17
Table 30	. Sample size and 95% Confidence Intervals for Implementation of BMPs for Rehabilitation of the Project Site by	
		18
Table 31	. Implementation of BMPs for Skid Trails by Region	19
Table 32	. Sample size and 95% Confidence Intervals for Implementation of BMPs for Skid Trails by Region	20
		21
	. Sample size and 95% Confidence Intervals for Implementation of BMPs for Wetlands by Region	21
Table 35	. Implementation of BMPs for Harvesting in Wetlands by Region	21
Table 36	. Sample size and 95% Confidence Intervals for Implementation of BMPs for Harvesting in Wetlands by Region	22
		22
Table 38	. Sample size and 95% Confidence Intervals for Implementation of Mandatory BMPs for Roads in Wetlands by	
Region		23
Table 39	. Implementation of BMPs for Flat Roads in Wetlands by Region	24
Table 40	. Sample size and 95% Confidence Intervals for Implementation of BMPs for Flat Roads in Wetlands by Region	25
Table 41	. Implementation of BMPs for Water Management in Wetlands by Region	26
Table 42	. Sample size and 95% Confidence Intervals for Implementation of BMPs for Water Management in Wetlands by	
Region		26
Table 43	. Implementation of BMPs for Roads by Region	27
Table 44	. Sample size and 95% Confidence Intervals for Implementation of BMPs for Roads by Region	29
Table 45	. Implementation of General BMPs for Stream Crossings by Region	31
Table 46	. Sample size and 95% Confidence Intervals for Implementation of General BMPs for Stream Crossings by Region 3	32
Table 47	. Implementation of BMPs for Bridgemat Stream Crossings by Region	32
Table 48	. Sample size and 95% Confidence Intervals for Implementation of BMPs for Bridgemat Stream Crossings by Regio	n
		33
Table 49	. Implementation of BMPs for Culvert Stream Crossings by Region	33
Table 50	. Sample size and 95% Confidence Intervals for Implementation of BMPs for Culvert Stream Crossings by Region	34
Table 51	. Implementation of BMPs for Ford Stream Crossings by Region	34
Table 52	. Sample size and 95% Confidence Intervals for Implementation of BMPs for Ford Stream Crossings by Region Erro)r
Bookma	rk not defined.	
Table 53	. Implementation of BMPs for Pole Stream Crossings by Region	35
Table 54	. Sample size and 95% Confidence Intervals for Implementation of BMPs for Pole Stream Crossings by Region	36
Table 55	. Implementation of BMPs for Streamside Management Zones by Region	37
Table 56	. Sample size and 95% Confidence Intervals for Implementation of BMPs for Streamside Management Zones by	
Table 57	. Implementation of BMPs for Site Preparation and Reforestation by Region	41
Table 58	. Sample size and 95% Confidence Intervals for Implementation of BMPs for Site Preparation and Reforestation by	
Table 59	. Implementation of BMPs for Chemicals, Fluids, and Solid Waste by Region	43
Table 60	. Sample size and 95% Confidence Intervals for Implementation of BMPs for Chemicals, Fluids, and Solid Waste by	1
Table 61	. Implementation of BMPs for Fire Management by Region	45
Table 62	. Sample size and 95% Confidence Intervals for Implementation of BMPs for Fire Management by Region	46

Harvesting: Controlling Runoff

Table 1. Percent Implementation of B	MPs for C	Controlling	Runoff b	y Region	ı										
BMPs for Controlling Runoff		BMP	Implemer	ntation				rly Implen O RISK to					ly Implem RISK to	ented BN WQ	IP
Billi o for controlling realion	or Controlling Runoff S M P SP				С	S	М	Р	SP	С	S	М	Р	SP	С
Overall	88	87	90	73	50	100	100	100	100	100	12	10	16	30	100
		Highe	er % is O _l	otimal			Highe	er % is Op	otimal			Low	<u>rer</u> % is C	Optimal	
S: Statewide, M: Mountains, P: Piedr	nont, SP:	Southeas	stern Plai	ns, C: Mic	d-Atlantic	Coastal I	Plain		•	•	•		•	•	

Table 2. Sample size and 95% Confid	ence Intervals	for Implemen	tation of BMP	s for Controllir	ng Runoff by R	Region				
DND- (a. Cartallia Daras		S	Sample Size (r	n)		BMP I	mplementation	n Rate & 95%	Confidence In	nterval
BMPs for Controlling Runoff	S	М	Р	SP	С	S	М	Р	SP	С
Overall	8,344	5,772	2,485	85	2	88 ± 0.7	87 ± 0.9	90 ± 1.2	72 ± 9.4	50 ± 40.5
S: Statewide, M: Mountains, P: Piedm	ont, SP: Sout	heastern Plair	ns, C: Mid-Atla	ntic Coastal F	Plain					

			BMP	Implemer	ntation				rly Impler O RISK to			lı	mproperly &	/ Impleme RISK to V		P
BMPs for Controlling Runoff: Broad-based Dips	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
Broad Bassa Bips									%							
Number and distance between dips follows spacing guidance (at a minimum).	0	81	75	85	N/A	N/A	94	100	91	N/A	N/A	25	50	0	N/A	N/A
Lay out and construct the broad- based dip at right angle to the travel surface and across the full width of the road.	S	99	100	98	N/A	N/A	100	100	100	N/A	N/A	0	N/A	0	N/A	N/A
Excavate a shallow dip approximately 15 to 20 feet long into the uphill travel surface.	S	98	100	93	N/A	N/A	100	100	100	N/A	N/A	0	N/A	0	N/A	N/A
Construct and compact a slight hump across the downhill edge of the dip.	S	99	98	100	N/A	N/A	100	100	100	N/A	N/A	50	50	N/A	N/A	N/A
Reverse grade of the hump does not exceed 2 to 3% slope down toward the base of the dip.	S	99	97	100	N/A	N/A	100	100	100	N/A	N/A	0	0	N/A	N/A	N/A
Outslope the bottom of the dip at enough of an angle to turn away water and runoff - approximately 2-3% angle.	S	99	99	100	N/A	N/A	100	100	100	N/A	N/A	0	0	N/A	N/A	N/A
Harden the travel surface with stone or other material on slopes greater than 8%, otherwise as needed.	S	65	57	86	N/A	N/A	100	100	100	N/A	N/A	10	0	100	N/A	N/A
Situate the broad-based dip outlet in a manner that prevents runoff from flowing directly into streams or waterbodies.	S	95	96	93	N/A	N/A	100	100	100	N/A	N/A	100	100	100	N/A	N/A
Capture the sediment from the outlet as needed.	S	94	97	83	N/A	N/A	100	100	100	N/A	N/A	60	0	100	N/A	N/A
Avoid siting the outlet onto soft soil or fill material, unless other BMPs are utilized to prevent erosion.	S	93	100	93	N/A	N/A	100	100	100	N/A	N/A	100	N/A	100	N/A	N/A

S: Statewide, M: Mountains, P: Piedmont, SP: Southeastern Plains, C: Mid-Atlantic Coastal Plain

BMPs for Controlling Runoff:			Sa	ample Size	(n)		BMP Imp	lementation	Rate & 95%	6 Confidence	e Interval
Broad-based Dips	AU	S	М	Р	SP	С	S	М	Р	SP	С
Number and distance between dips follows spacing guidance (at a minimum).	0	21	8	13	0	0	76 ± 17	67 ± 27	77 ± 21	N/A	N/A
Layout and construct the broad- based dip at right angle to the travel surface and across the full width of the road.	S	133	89	44	0	0	98 ± 3	98 ± 3	94 ± 8	N/A	N/A
Excavate a shallow dip approximately 15 to 20 feet long into the uphill travel surface.	S	136	92	44	0	0	96 ± 3	98 ± 3	90 ± 9	N/A	N/A
Construct and compact a slight hump across the downhill edge of the dip.	S	136	92	44	0	0	97 ± 3	96 ± 4	96 ± 7	N/A	N/A
Reverse grade of the hump does not exceed 2 to 3% slope down toward the base of the dip.	S	82	38	44	0	0	97 ± 4	93 ± 9	96 ± 7	N/A	N/A
Outslope the bottom of the dip at enough of an angle to turn away water and runoff - approximately 2-3% angle.	S	121	77	44	0	0	98 ± 3	96 ± 5	96 ± 7	N/A	N/A
Harden the travel surface with stone or other material on slopes greater than 8%, otherwise as needed.	S	83	61	22	0	0	64 ± 10	57 ± 12	81 ± 16	N/A	N/A
Situate the broad-based dip outlet in a manner that prevents runoff from flowing directly into streams or waterbodies.	S	119	78	41	0	0	94 ± 4	94 ± 6	89 ± 10	N/A	N/A
Capture the sediment from the outlet as needed.	S	88	70	18	0	0	92 ± 6	95 ± 5	77 ± 18	N/A	N/A
Avoid siting the outlet onto soft soil or fill material, unless other BMPs are utilized to prevent erosion.	S	46	6	40	0	0	90 ± 9	80 ± 28	89 ± 10	N/A	N/A

²

DUD (0 . III D . //			BMP	Implemer	ntation				rly Impler D RISK to			lı İ		/ Impleme RISK to V	ented BM VQ	P
BMPs for Controlling Runoff: Cross-Drains	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
									%							
Number and distance between																
cross-drain culverts follows spacing guidance (at a minimum).	0	100	100	100	100	N/A	100	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A
Set cross-drains on a 2 to 4 percent downslope angle.	S	100	100	100	100	N/A	100	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A
Install cross-drains at an approach angle suitable to allow free flow of runoff into and through the cross-drain.	S	100	100	100	100	N/A	100	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A
Match the base level of the cross- drain inflow to the base elevation of the ditchline.	S	100	100	100	N/A	N/A	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Install drop-inlet where the elevation of the cross-drain inlet is lower than the ditchline, as needed.	S	100	N/A	100	N/A	N/A	100	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For culvert pipes, cover the pipe with at least 1 foot of fill and harden the crossing location.	S	100	100	100	100	N/A	100	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A
For culvert pipes, use at least a 15 inch diameter pipe on heavy flow areas.	S	100	100	100	N/A	N/A	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For culvert pipes, use at least a 12 inch diameter pipe if only needed for groundwater seeps or minimal runoff volume.	S	100	N/A	N/A	100	N/A	100	N/A	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A
Match the cross-sectional area of the pipe to the area of the contributing ditchline.	S	100	100	100	N/A	N/A	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Minimize erosion on both ends of the cross-drain of the ditchline.	S	100	100	100	100	N/A	100	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A
Where needed, harden the inflow headwall of the cross-drain with stone, sandbags, geotextiles, vegetation, drop-inlet, or other suitable materials.	S	100	100	N/A	N/A	N/A	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Situate the cross-drain outlet in a manner that prevents runoff from flowing directly into streams or waterbodies.	S	100	100	100	N/A	N/A	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Capture the sediment below the outlet as needed.	S	100	100	N/A	N/A	N/A	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Avoid siting the outlet onto soft soil or fill material, unless other BMPs are utilized to prevent erosion.	S	100	N/A	100	100	N/A	100	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A
			Highe	er % is O _l	otimal			Highe	er % is O _l	otimal			Lowe	<u>er</u> % is O _l	otimal	

BMPs for Controlling Runoff: Cross-			Sa	ample Size	(n)		BMP Imp	lementation	Rate & 95%	6 Confidence	e Interva
Drains	AU	S	М	Р	SP	С	S	М	Р	SP	С
Number and distance between cross-drain culverts follows spacing guidance (at a minimum).	0	3	1	1	1	0	72 ± 36	60 ± 44	60 ± 44	60 ± 44	N/A
Set cross-drains on a 2 to 4% downslope angle.	S	11	3	2	6	0	87 ± 20	72 ± 36	67 ± 40	80 ± 28	N/A
Install cross-drains at an approach angle suitable to allow free flow of runoff into and through the cross-drain.	S	11	3	2	6	0	87 ± 20	72 ± 36	67 ± 40	80 ± 28	N/A
Match the base level of the cross- drain inflow to the base elevation of the ditchline.	S	5	3	2	0	0	78 ± 30	72 ± 36	67 ± 40	N/A	N/A
Install drop-inlet where the elevation of the cross-drain inlet is lower than the ditchline, as needed.	S	2	0	2	0	0	67 ± 40	N/A	67 ± 40	N/A	N/A
For culvert pipes, cover the pipe with at least 1 foot of fill and harden the crossing location.	S	11	3	2	6	0	87 ± 20	72 ± 36	67 ± 40	80 ± 28	N/A
For culvert pipes, use at least a 15 inch diameter pipe on heavy flow areas.	S	5	3	2	0	0	78 ± 30	72 ± 36	67 ± 40	N/A	N/A
For culvert pipes, use at least a 12 inch diameter pipe if only needed for groundwater seeps or minimal runoff volume.	S	6	0	0	6	0	80 ± 28	N/A	N/A	80 ± 28	N/A
Match the cross-sectional area of the pipe to the area of the contributing ditchline.	S	5	3	2	0	0	78 ± 30	72 ± 36	67 ± 40	N/A	N/A
Minimize erosion on both ends of the cross-drain of the ditchline.	S	11	3	2	6	0	87 ± 20	72 ± 36	67 ± 40	80 ± 28	N/A
Where needed, harden the inflow headwall of the cross-drain with stone, sandbags, geotextiles, vegetation, drop-inlet, or other suitable materials.	S	3	3	0	0	0	72 ± 36	72 ± 36	N/A	N/A	N/A
Situate the cross-drain outlet in a manner that prevents runoff from flowing directly into streams or waterbodies.	Ø	5	3	2	0	0	78 ± 30	72 ± 36	67 ± 40	N/A	N/A
Capture the sediment below the outlet as needed.	S	3	3	0	0	0	72 ± 36	72 ± 36	N/A	N/A	N/A
Avoid siting the outlet onto soft soil or fill material, unless other BMPs are utilized to prevent erosion.	S	8	0	2	6	0	84 ± 24	N/A	67 ± 40	80 ± 28	N/A

S: Statewide, M: Mountains, P: Piedmont, SP: Southeastern Plains, C: Mid-Atlantic Coastal Plain

Table 7. Percent Implementation of B	MPs for	Inside D	itchlines	by Regio	า											
DUD (0 / W D (6			BMP	Implemer	ntation				rly Impler O RISK to			lı	mproperly & I	/ Impleme		Р
BMPs for Controlling Runoff: Inside Ditchlines	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
									%							
Excavate the ditchline to the minimum depth and width needed.	0	100	100	100	N/A	N/A	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Match the cross-sectional area of the pipe to the area of the contributing ditchline.	S	100	100	100	N/A	N/A	100	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Match the ditchline cross-sectional area to a minimum equivalent of a 15 inch culvert.	S	100	100	100	N/A	N/A	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Control runoff speed and volume.	0	100	100	100	N/A	N/A	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Install geotextiles, matting, stone or other suitable material as needed to prevent downcutting.	S	0	0	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0	N/A	N/A
Install turnouts or cross-drains at intervals adequate to carry the expected runoff.	0	100	100	100	N/A	N/A	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Situate outlet in a manner that prevents runoff from flowing directly into streams or waterbodies.	S	100	100	100	N/A	N/A	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Capture the sediment below the outlet as needed.	S	100	100	N/A	N/A	N/A	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Avoid siting the outlet onto soft soil or fill material, unless other BMPs are utilized to prevent erosion.	S	100	100	100	N/A	N/A	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
			Highe	er % is O _l	otimal			Highe	er % is O _l	otimal			Lowe	<u>er</u> % is O _l	ptimal	
"N/A" indicates that an instance of tha								survey								
S: Statewide, M: Mountains, P: Piedn	nont, SI	P: Southe	eastern P	lains, C: I	Mid-Atlan	tic Coasta	al Plain									

BMPs for Controlling Runoff: Inside			Sa	ample Size	(n)		BMP Imp	lementation	Rate & 95%	6 Confidence	e Interva
Ditchlines	AU	S	М	Р	SP	С	S	М	Р	SP	С
Excavate the ditchline to the minimum depth and width needed.	0	4	2	2	0	0	76 ± 32	67 ± 40	67 ± 40	N/A	N/A
Match the cross-sectional area of the pipe to the area of the contributing ditchline.	S	8	1	7	0	0	84 ± 24	60 ± 44	82 ± 26	N/A	N/A
Match the ditchline cross-sectional area to a minimum equivalent of a 15 inch culvert.	S	8	1	7	0	0	84 ± 24	60 ± 44	82 ± 26	N/A	N/A
Control runoff speed and volume.	0	4	2	2	0	0	76 ± 32	67 ± 40	67 ± 40	N/A	N/A
Install geotextiles, matting, stone or other suitable material as needed to prevent downcutting.	S	2	1	1	0	0	33 ± 40	40 ± 44	40 ± 44	N/A	N/A
Install turnouts or cross-drains at intervals adequate to carry the expected runoff.	0	4	2	2	0	0	76 ± 32	67 ± 40	67 ± 40	N/A	N/A
Situate outlet in a manner that prevents runoff from flowing directly into streams or waterbodies.	S	7	1	6	0	0	82 ± 26	60 ± 44	80 ± 28	N/A	N/A
Capture the sediment below the outlet as needed.	S	2	2	0	0	0	67 ± 40	67 ± 40	N/A	N/A	N/A
Avoid siting the outlet onto soft soil or fill material, unless other BMPs are utilized to prevent erosion.	S	8	1	7	0	0	84 ± 24	60 ± 44	82 ± 26	N/A	N/A

BMPs for Controlling Runoff:			BMP	Implemer	ntation				rly Impler O RISK to			lr		/ Impleme RISK to V		P
Insloping, Outsloping, and Crowning	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
									%							
On insloped roads, excavate and maintain inside ditchlines and cross-drains.	0	100	100	100	N/A	N/A	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maintain the road surface as needed to minimize or repair ruts, holes, or depressions that hold water.	0	71	75	100	N/A	50	100	100	100	N/A	100	50	0	N/A	N/A	100
			Highe	er % is O	otimal			Highe	er % is Oi	otimal			Lowe	er % is O	otimal	

BMPs for Controlling Runoff:			S	ample Size	(n)		BMP Imp	lementation	Rate & 95%	6 Confidence	ce Interval
Insloping, Outsloping, and Crowning	AU	S	М	Р	SP	С	S	М	Р	SP	С
On insloped roads, excavate and maintain inside ditchlines and cross-drains.	0	2	1	1	0	0	67 ± 40	60 ± 44	60 ± 44	N/A	N/A
Maintain the road surface as needed to minimize or repair ruts, holes, or depressions that hold water.	0	7	4	1	0	2	64 ± 29	63 ± 34	60 ± 44	N/A	50 ± 4′

Table 11. Percent Implementation of	BIMPS TO	or Turnou		,				Prope	rly Impler	nented		l	mproperly	/ Impleme	ented BM	P
DMDs for Controlling Dunoff			BMP	Implemer	ntation				O RISK to					RISK to V		
BMPs for Controlling Runoff: Turnouts	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
									%							
Number and distance between turnouts follows spacing guidance (at a minimum).	0	92	80	100	100	N/A	100	100	100	100	N/A	0	0	N/A	N/A	N/A
Begin the inflow of the turnout at the same grade level as the road, skid trail, fireline or ditch.	S	97	100	99	0	N/A	100	100	100	N/A	N/A	0	N/A	0	0	N/A
Excavate the turnout with enough outlet gradient angle so runoff can drain in a controlled manner, generally from 1 to 3% is adequate.	S	97	99	98	33	N/A	100	100	100	100	N/A	29	0	0	50	N/A
Construct using a turnout angle between 15 to 30 degrees downslope.	S	99	100	97	100	N/A	100	100	100	100	N/A	0	N/A	0	N/A	N/A
Situate outlet in a manner that prevents runoff from flowing directly into streams or waterbodies.	S	96	99	93	67	N/A	100	100	100	100	N/A	78	100	67	100	N/A
Capture the sediment below the outlet as needed.	S	94	99	90	33	N/A	100	100	100	100	N/A	80	100	100	50	N/A
Avoid siting the outlet onto soft soil or fill material, unless other BMPs are utilized to prevent erosion.	S	96	100	95	100	N/A	100	100	100	100	N/A	100	N/A	100	N/A	N/A
For use in roadside ditches, minimize erosion within that ditch so the inflow of the turnout does not create a gully.	S	85	88	83	N/A	N/A	100	100	100	N/A	N/A	0	0	0	N/A	N/A
			Highe	er % is O _l	otimal			Highe	er % is O	otimal			Lowe	<u>er</u> % is O _l	otimal	
"N/A" indicates that an instance of tha								survey								
S: Statewide, M: Mountains, P: Piedn	nont, SI	: Southe	astern P	ains, C: I	Mid-Atlan	tic Coasta	al Plain									

DND (0 4 11 D 17 T			S	ample Size (r	٦)		BMP Ir	nplementatio	n Rate & 95%	Confidence	Interval
BMPs for Controlling Runoff: Turnouts	AU	S	М	Р	SP	С	S	М	Р	SP	С
Number and distance between turnouts follows spacing guidance (at a minimum).	0	36	15	20	1	0	88 ± 11	74 ± 20	92 ± 13	60 ± 44	N/A
Begin the inflow of the turnout at the same grade level as the road, skid trail, fireline or ditch.	S	251	152	93	6	0	96 ± 3	99 ± 2	97 ± 4	20 ± 28	N/A
Excavate the turnout with enough outlet gradient angle so runoff can drain in a controlled manner, generally from 1 to 3% is adequate.	S	226	115	105	6	0	96 ± 3	98 ± 3	96 ± 4	40 ± 31	N/A
Construct using a turnout angle between 15 to 30 degrees downslope.	S	258	147	105	6	0	98 ± 2	99 ± 2	95 ± 4	80 ± 28	N/A
Situate outlet in a manner that prevents runoff from flowing directly into streams or waterbodies.	S	216	121	89	6	0	95 ± 3	98 ± 3	91 ± 6	60 ± 31	N/A
Capture the sediment below the outlet as needed.	S	169	112	51	6	0	93 ± 4	97 ± 3	87 ± 9	40 ± 31	N/A
Avoid siting the outlet onto soft soil or fill material, unless other BMPs are utilized to prevent erosion.	S	140	29	105	6	0	95 ± 4	94 ± 10	94 ± 5	80 ± 28	N/A
For use in roadside ditches, minimize erosion within that ditch so the inflow of the turnout does not create a gully. "N/A" indicates that an instance of that indi-	S	26	8	18	0	0	80 ± 15	75 ± 26	77 ± 18	N/A	N/A

S: Statewide, M: Mountains, P: Piedmont, SP: Southeastern Plains, C: Mid-Atlantic Coastal Plain

DMDs for Controlling Duroff			BMP	Implemer	ntation				rly Impler O RISK to			-		/ Impleme RISK to V		P
BMPs for Controlling Runoff: Waterbars	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
									%							
Number and spacing between waterbars follows spacing guidance (at a minimum).	0	67	60	92	0	N/A	100	100	100	N/A	N/A	19	14	0	100	N/A
Excavate and construct using equipment/techniques that assure proper angles and a firm waterbar hump.	0	86	84	91	N/A	N/A	100	100	100	N/A	N/A	50	60	0	N/A	N/A
Tie the uphill end of the waterbar into the side / cut slope, and angle the waterbar downhill towards the outfall edge.	S	88	91	81	0	N/A	100	100	100	N/A	N/A	0	0	0	0	N/A
Use an angle ranging from 15 to 30 degrees (downslope) for the waterbar.	S	91	92	92	0	N/A	100	100	100	N/A	N/A	0	0	0	0	N/A
Excavate the trench with enough gradient to allow adequate flow of water runoff.	S	85	86	82	0	N/A	100	100	100	N/A	N/A	0	0	0	0	N/A
Situate outlet in a manner that prevents runoff from flowing directly into streams or waterbodies.	S	98	97	100	100	N/A	100	100	100	100	N/A	64	63	100	N/A	N/A
Capture the sediment below the outlet as needed.	S	88	89	86	N/A	N/A	100	100	100	N/A	N/A	46	44	54	N/A	N/A
Avoid siting the outlet onto soft soil or fill material, unless other BMPs are utilized to prevent erosion.	S	86	85	91	100	N/A	100	100	100	100	N/A	22	12	100	N/A	N/A
Establish groundcover or harden the waterbar with stone or other material, as needed.	S	45	46	41	0	N/A	100	100	100	N/A	N/A	6	7	0	0	N/A
			Highe	er % is Op	otimal			Highe	er % is O	otimal			Lowe	<u>er</u> % is O _l	otimal	

S: Statewide, M: Mountains, P: Piedmont, SP: Southeastern Plains, C: Mid-Atlantic Coastal Plain

BMPs for Controlling Runoff:			S	ample Size ((n)		BMP Imp	lementation	Rate & 95%	6 Confidence	e Interva
Waterbars	AU	S	М	Р	SP	С	S	М	Р	SP	С
Number and spacing between waterbars follows spacing guidance (at a minimum).	0	48	35	12	1	0	65 ± 13	59 ± 15	82 ± 20	40 ± 44	N/A
Excavate and construct using equipment/techniques that assure proper angles and a firm waterbar hump.	0	43	32	11	0	0	83 ± 11	81 ± 13	80 ± 22	N/A	N/A
Tie the uphill end of the waterbar into the side / cut slope, and angle the waterbar downhill towards the outfall edge.	S	1,113	800	312	1	0	88 ± 2	90 ± 2	81 ± 4	40 ± 44	N/A
Use an angle ranging from 15 to 30 degrees (downslope) for the waterbar.	S	952	638	312	2	0	91 ± 2	91 ± 2	91 ± 3	33 ± 40	N/A
Excavate the trench with enough gradient to allow adequate flow of water runoff.	S	1,107	798	308	1	0	85 ± 2	86 ± 2	81 ± 4	40 ± 44	N/A
Situate outlet in a manner that prevents runoff from flowing directly into streams or waterbodies.	S	1,050	768	280	2	0	97 ± 1	97 ± 1	99 ± 1	67 ± 40	N/A
Capture the sediment below the outlet as needed.	S	468	376	92	0	0	88 ± 3	89 ± 3	84 ± 7	N/A	N/A
Avoid siting the outlet onto soft soil or fill material, unless other BMPs are utilized to prevent erosion.	S	425	347	76	2	0	86 ± 3	85 ± 4	89 ± 7	67 ± 40	N/A
Establish groundcover or harden the waterbar with stone or other material, as needed.	S	706	619	85	2	0	45 ± 4	46 ± 4	42 ± 10	33 ± 40	N/A

Harvesting: Capturing Sediment

Table 15. Percent Implementation of	BMPs for	Capturino	g Sedime	nt by Re	gion										
BMPs for Capturing Sediment		BMP	Implemer	ntation				rly Impler O RISK to			lı	mproperly & I	/ Impleme		Р
Bin o for captaining coannote	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
Overall	83	89	68	86	100	100	100	100	100	100	20	31	8	50	N/A
		Highe	er % is O	otimal			Highe	er % is O _l	otimal			Lowe	<u>er</u> % is O _l	otimal	
"N/A" indicates that an instance of the	t individua	al BMP in	that eco	region wa	as not obs	erved du	ring the s	urvey							
S: Statewide, M: Mountains, P: Piedr	nont, SP:	Southeas	stern Plai	ns, C: Mi	d-Atlantic	Coastal	Plain								

Table 16. Sample size and 95% Confi	dence Inter	vals for Imp	lementation	of BMPs fo	r Capturing	Sediment by	y Region			
DMD- (as Ocal vive Ocalisms)		Sa	ample Size	(n)		BMP Imp	lementation	Rate & 95%	% Confidence	e Interval
BMPs for Capturing Sediment	S	М	Р	SP	С	S	М	Р	SP	С
Overall	567	395	151	14	7	83 ± 3	88 ± 3	67 ± 7	78 ± 20	82 ± 25
S: Statewide, M: Mountains, P: Piedm	nont, SP: Sc	outheastern	Plains, C: N	/lid-Atlantic	Coastal Plai	n				

DMDs for Continion Codinont			BMP	Implemer	ntation				rly Impler O RISK to			li		/ Impleme RISK to V		P
BMPs for Capturing Sediment: Brush Barriers	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
									%							
Pile and pack down brush to achieve close contact with the ground surface.	S	85	92	63	83	N/A	100	100	100	100	N/A	11	18	0	100	N/A
Cut large pieces of material into smaller chunks, as needed.	0	77	67	100	50	N/A	100	100	100	100	N/A	20	25	N/A	0	N/A
Use additional BMP measures if brush barriers fail to capture sediment.	0	60	56	100	N/A	N/A	100	100	100	N/A	N/A	75	75	N/A	N/A	N/A
Avoid removing the brush barrier once it is established.	S	100	100	100	100	N/A	100	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A
			Highe	er % is O	otimal			Highe	er % is O	otimal			Lowe	<u>er</u> % is O _l	otimal	

BMPs for Capturing Sediment:			Sa	ample Size ((n)		BMP Imp	lementation	Rate & 95%	6 Confidence	e Interval
Brush Barriers	AU	S	М	Р	SP	С	S	М	Р	SP	С
Pile and pack down brush to achieve close contact with the ground surface.	S	191	142	43	6	0	85 ± 5	91 ± 5	62 ± 14	70 ± 30	N/A
Cut large pieces of material into smaller chunks, as needed.	0	22	12	8	2	0	73 ± 17	63 ± 24	84 ± 24	50 ± 41	N/A
Use additional BMP measures if brush barriers fail to capture sediment.	0	10	9	1	0	0	57 ± 26	54 ± 27	60 ± 44	N/A	N/A
Avoid removing the brush barrier once it is established.	S	182	138	38	6	0	99 ± 2	99 ± 2	95 ± 8	80 ± 28	N/A

S: Statewide, M: Mountains, P: Piedmont, SP: Southeastern Plains, C: Mid-Atlantic Coastal Plain

Table 19. Percent Implementation of B	BMPs fo	or Sedime	ent Pits b	y Region												
BMPs for Capturing Sediment:			BMP	Implemer	ntation				rly Impler O RISK to			Ir	mproperly & I	/ Impleme		P
Sediment Pits	AU	S	М	Р	SP	С	S	M	Р	SP	С	S	М	Р	SP	С
Excavate the pit with a suitable opening and depth to capture the expected sediment runoff, minimizing disturbance.	S	94	90	100	N/A	N/A	100	100	100	N/A	N/A	100	100	N/A	N/A	N/A
Locate the pit within stable, well-drained soils when available.	S	100	100	100	N/A	N/A	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
If the pit must be situated within unstable soils, install additional measures to provide soil stabilization around the pit.	S	0	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	100	100	N/A	N/A	N/A
Dispose or stabilize the excavated spoil material.	0	67	67	67	N/A	N/A	100	100	100	N/A	N/A	50	100	0	N/A	N/A
Avoid using the spoil to build up the sides of the pit.	S	60	90	0	N/A	N/A	100	100	N/A	N/A	N/A	17	100	0	N/A	N/A
Create a reinforced outlet for overflow capacity.	S	56	90	0	N/A	N/A	100	100	N/A	N/A	N/A	14	100	0	N/A	N/A
Harden the walls of the pit to minimize the risk of structural failure.	S	6	10	0	N/A	N/A	100	100	N/A	N/A	N/A	6	11	0	N/A	N/A
Revegetate exposed soil around the perimeter of the pit.	S	36	50	0	N/A	N/A	100	100	N/A	N/A	N/A	6	11	0	N/A	N/A
Clean out accumulated sediment as needed and dispose of appropriately (with stabilization as needed).	S	50	50	N/A	N/A	N/A	100	100	N/A	N/A	N/A	100	100	N/A	N/A	N/A
			U	er % is O _l					er % is O	otimal			Lowe	<u>er</u> % is O _l	otimal	
"N/A" indicates that an instance of tha S: Statewide, M: Mountains, P: Piedn								survey								

BMPs for Capturing Sediment: Sediment	AU		S	ample Size (ı	า)		BMP Ir	mplementation	n Rate & 95%	Confidence	Interval
Pits	AU	S	М	Р	SP	С	S	М	Р	SP	С
Excavate the pit with a suitable opening and depth to capture the expected sediment runoff, minimizing disturbance.	S	17	10	7	0	0	86 ± 16	79 ± 23	82 ± 26	N/A	N/A
Locate the pit within stable, well-drained soils when available.	S	17	10	7	0	0	91 ± 14	86 ± 21	82 ± 26	N/A	N/A
If the pit must be situated within unstable soils, install additional measures to provide soil stabilization around the pit.	S	1	1	0	0	0	40 ± 44	40 ± 44	N/A	N/A	N/A
Dispose or stabilize the excavated spoil material.	0	6	3	3	0	0	60 ± 31	57 ± 37	57 ± 37	N/A	N/A
Avoid using the spoil to build up the sides of the pit.	S	15	10	5	0	0	58 ± 22	79 ± 23	22 ± 30	N/A	N/A
Create a reinforced outlet for overflow capacity.	S	16	10	6	0	0	55 ± 22	79 ± 23	20 ± 28	N/A	N/A
Harden the walls of the pit to minimize the risk of structural failure.	S	17	10	7	0	0	14 ± 16	21 ± 23	18 ± 26	N/A	N/A
Revegetate exposed soil around the perimeter of the pit.	S	25	18	7	0	0	38 ± 18	50 ± 21	18 ± 26	N/A	N/A
Clean out accumulated sediment as needed and dispose of appropriately (with stabilization as needed).	S	2	2	0	0	0	50 ± 41	50 ± 41	N/A	N/A	N/A

Install measures upslope and downslope of silt fence as needed. Adjust BMPs accordingly if sediment is built-up behind fence. Limit drainage area to 100 feet of	AU O O	S 100	M	Р	SP	С	0	W 110	RISK to					RISK to V		
downslope of silt fence as needed. Adjust BMPs accordingly if sediment is built-up behind fence. Limit drainage area to 100 feet of	_	100	400				S	М	Р	SP	С	S	М	P	SP	С
downslope of silt fence as needed. Adjust BMPs accordingly if sediment is built-up behind fence. Limit drainage area to 100 feet of	_	100	400						%							
sediment is built-up behind fence. Limit drainage area to 100 feet of	0		100	100	N/A	100	100	100	100	N/A	100	N/A	N/A	N/A	N/A	N/A
S	0	0	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	100	N/A	100	N/A	N/A
fence for every one-quarter acre of land.	S	100	100	100	N/A	100	100	100	100	N/A	100	N/A	N/A	N/A	N/A	N/A
Set fencing along the land contours and extend the fencing far beyond the expected pathway(s) of runoff flow.	S	25	0	0	N/A	100	100	N/A	N/A	N/A	100	67	0	100	N/A	N/A
Ends of fencing gently turned like a sideways "J", with the hook facing uphill.	S	75	0	100	N/A	100	100	N/A	100	N/A	100	0	0	N/A	N/A	N/A
Bury the bottom 4 to 6 inches of silt fence securely into the ground.	S	100	100	100	N/A	100	100	100	100	N/A	100	N/A	N/A	N/A	N/A	N/A
Install the fence so that the buried portion is along the upslope face of the fence.	S	100	100	100	N/A	100	100	100	100	N/A	100	N/A	N/A	N/A	N/A	N/A
Reinforce the silt fencing from being knocked over or blown out as needed.	S	100	100	100	N/A	100	100	100	100	N/A	100	N/A	N/A	N/A	N/A	N/A
Monitor fence and take prompt action if not sufficient.	0	0	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	100	N/A	100	N/A	N/A
			Highe	er % is Op	otimal			Highe	er % is Op	otimal			Lowe	<u>er</u> % is O _l	otimal	

BMPs for Capturing Sediment: Silt			Sa	ample Size	(n)		BMP Imp	lementation	Rate & 95%	6 Confiden	ce Interval
Fences	AU	S	М	Р	SP	С	S	М	Р	SP	С
Install measures upslope and downslope of silt fence as needed.	0	4	2	1	0	1	76 ± 32	67 ± 40	60 ± 44	N/A	60 ± 44
Adjust BMPs accordingly if sediment is built-up behing fence.	0	1	0	1	0	0	40 ± 44	N/A	40 ± 44	N/A	N/A
Limit drainage area to 100 feet of fence for every one-quarter acre of land.	S	4	1	2	0	1	76 ± 32	60 ± 44	67 ± 40	N/A	60 ± 44
Set fencing along the land contours and extend the fencing far beyond the expected pathway(s) of runoff flow.	S	4	1	2	0	1	37 ± 34	40 ± 44	33 ± 40	N/A	60 ± 44
Ends of fencing gently turned like a sideways "J", with the hook facing uphill.	S	4	1	2	0	1	63 ± 34	40 ± 44	67 ± 40	N/A	60 ± 4
Bury the bottom 4 to 6 inches of silt fence securely into the ground.	S	9	6	2	0	1	85 ± 22	80 ± 28	67 ± 40	N/A	60 ± 4
Install the fence so that the buried portion is along the upslope face of the fence.	S	8	5	2	0	1	84 ± 24	78 ± 30	67 ± 40	N/A	60 ± 4
Reinforce the silt fencing from being knocked over or blown out as needed.	S	4	1	2	0	1	76 ± 32	60 ± 44	67 ± 40	N/A	60 ± 4
Monitor fence and take prompt action if not sufficient.	0	1	0	1	0	0	40 ± 44	N/A	40 ± 44	N/A	N/A

DMDs for Osstarion Osdinson			BMP	mplemen	ntation				rly Implen O RISK to			li	nproperly & I	Impleme		P
BMPs for Capturing Sediment: Straw Bales	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
									%							
Install measures upslope and downslope of bales as needed.	0	0	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	N/A	0	N/A	N/A
Set bales tightly against the ground surface and anchor.	S	100	100	100	N/A	N/A	N/A	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
If stacking square bales, stagger to provide overlap - similar to brick aying.	s	0	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	N/A	0	N/A	N/A
Monitor bales and take prompt action if not sufficient.	S	0	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	N/A	0	N/A	N/A
			Highe	er % is Op	otimal			Highe	er % is Op	otimal			Lowe	<u>er</u> % is O _l	otimal	

BMPs for Capturing Sediment:			S	ample Size	(n)		BMP Imp	lementation	Rate & 95%	6 Confidence	e Interva
Straw Bales	AU	S	М	Р	SP	С	S	М	Р	SP	С
Install measures upslope and downslope of bales as needed.	0	1	0	1	0	0	40 ± 44	N/A	40 ± 44	N/A	N/A
Set bales tightly against the ground surface and anchor.	S	4	3	1	0	0	76 ± 32	72 ± 36	60 ± 44	N/A	N/A
If stacking square bales, stagger to provide overlap - similar to brick laying.	S	1	0	1	0	0	40 ± 44	N/A	40 ± 44	N/A	N/A
Monitor bales and take prompt action if not sufficient.	S	1	0	1	0	0	40 ± 44	N/A	40 ± 44	N/A	N/A

Harvesting: Decks

Table 25. Percent Implemen	tation o	f BMPs fo	or Decks	by Regio	ı											
			BMP	Implemer	ntation				rly Impler O RISK to			Ir	mproperly &	/ Impleme		Р
BMPs for Decks	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
									%							
Overall		90	83	93	92	90	100	99	100	100	100	1	24	4	0	6
Minimize the number of decks.	0	93	91	96	87	93	99	100	100	97	100	0	0	0	0	0
Minimize the size of decks.	S	90	82	98	80	93	100	100	100	100	100	0	0	0	0	0
Establish deck at locations where soil disturbance is minimized.	S	94	91	99	98	86	100	100	100	100	100	25	75	0	0	10
Situate deck outside SMZ.	S	95	81	97	100	94	100	100	100	100	100	40	40	33	N/A	50
Situate deck outside ephemeral drainages.	S	97	88	100	100	100	100	100	100	100	100	60	60	N/A	N/A	N/A
Situate deck atop flat or gently sloping land.	S	99	95	100	100	100	100	98	100	100	100	0	0	N/A	N/A	N/A
Situate deck atop stable soil.	S	96	100	98	98	89	100	98	100	100	100	0	N/A	0	0	0
Install sufficient erosion control measures to control runoff and capture sediment.	S	79	76	78	87	76	100	100	100	100	100	17	38	0	0	20
Use groundcover materials (slash, laps, limbs, tops, etc.) as needed to minimize disturbance to exposed soils.	S	66	36	65	80	77	100	100	100	100	100	5	11	3	0	0
Select side-ridge location if steep terrain is unavoidable and use additional BMPs as needed.	S	96	95	100	N/A	N/A	100	100	100	N/A	N/A	100	100	N/A	N/A	N/A
			Highe	er % is O _l	otimal			Highe	er % is O _l	otimal			Lowe	<u>er</u> % is O _l	otimal	

[&]quot;N/A" indicates that an instance of that individual BMP in that ecoregion was not observed during the survey

S: Statewide, M: Mountains, P: Piedmont, SP: Southeastern Plains, C: Mid-Atlantic Coastal Plain

Table 26. Sample size and 95% Conf	idence	Intervals for	Implement	ation of BMI	Ps for Deck	s by Region					
BMPs for Decks	AU		Sa	ample Size	(n)		BMP Imp	lementation	Rate & 95%	6 Confidence	e Interval
BIVIPS IOI DECKS	AU	S	М	Р	SP	С	S	М	Р	SP	С
Overall		2,039	374	783	403	479	90 ± 1	83 ± 4	93 ± 2	92 ± 3	89 ± 3
Minimize the number of decks.	0	200	35	72	39	54	92 ± 4	87 ± 11	94 ± 6	84 ± 11	90 ± 8
Minimize the size of decks.	S	271	45	99	56	71	90 ± 4	80 ± 11	96 ± 4	78 ± 11	91 ± 7
Establish deck at locations where soil disturbance is minimized.	S	266	43	97	56	70	93 ± 3	87 ± 10	97 ± 4	95 ± 6	84 ± 9
Situate deck outside SMZ.	S	186	27	92	31	36	94 ± 3	78 ± 15	95 ± 5	94 ± 9	90 ± 10
Situate deck outside ephemeral drainages.	S	190	40	86	36	28	96 ± 3	84 ± 11	98 ± 4	95 ± 8	94 ± 10
Situate deck atop flat or gently sloping land.	S	267	44	104	55	64	99 ± 1	92 ± 8	98 ± 3	97 ± 5	97 ± 5
Situate deck atop stable soil.	S	270	45	99	56	70	95 ± 3	96 ± 7	96 ± 4	95 ± 6	87 ± 8
Install sufficient erosion control measures to control runoff and capture sediment.	S	114	33	37	23	21	78 ± 8	73 ± 15	76 ± 13	82 ± 15	72 ± 18
Use groundcover materials (slash, laps, limbs, tops, etc.) as needed to minimize disturbance to exposed soils.	S	251	42	93	51	65	66 ± 6	37 ± 14	64 ± 10	78 ± 11	75 ± 10
Select side-ridge location if steep terrain is unavoidable and use additional BMPs as needed. "N/A" indicates that an instance of tha	S	24	20	4	0	0	90 ± 12	88 ± 14	76 ± 32	N/A	N/A

S: Statewide, M: Mountains, P: Piedmont, SP: Southeastern Plains, C: Mid-Atlantic Coastal Plain

Harvesting: Logging Systems

Table 27. Implementation of BMPs for	r Loggir	ıg Systen	ns by Reg	gion												
			BMP	Implemer	ntation				rly Impler O RISK to			lı	mproperly &	/ Impleme		Р
BMPs for Logging Systems	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
									%							
Overall		86	89	93	90	72	100	100	100	99	100	24	44	27	0	24
Single pass of equipment does not produce significant rut.	0	87	97	93	85	75	100	100	100	100	100	12	0	20	0	15
Harvest timber in a manner that minimizes significant changes to soil structure or organic matter.	0	91	89	96	92	85	99	100	100	97	100	22	25	0	0	38
Cease operations when inclement weather and/or wet site conditions persist.	0	75	73	87	91	36	100	100	100	100	100	34	75	43	0	25
Avoid harvesting snags when present.	0	100	N/A	100	100	N/A	100	N/A	100	100	N/A	N/A	N/A	N/A	N/A	N/A
Avoid harvesting dead coarse wood when present.	0	100	N/A	100	100	N/A	100	N/A	100	100	N/A	N/A	N/A	N/A	N/A	N/A
Avoid harvesting tree roots, stumps, or existing duff liter.	0	100	N/A	100	100	N/A	100	N/A	100	100	N/A	N/A	N/A	N/A	N/A	N/A
			•	er % is O _l				U	er % is O _l	otimal			Lowe	<u>er</u> % is O _l	otimal	
"N/A" indicates that an instance of tha								survey								
S: Statewide, M: Mountains, P: Piedn	nont, SI	: Southe	astern Pl	ains, C: I	Mid-Atlan	tic Coasta	al Plain									

DMDs for Lancing Contains			Sa	ample Size	(n)		BMP Imp	lementation	Rate & 95%	6 Confidence	e Interval
BMPs for Logging Systems	AU	S	М	Р	SP	С	S	М	Р	SP	С
Overall		392	84	203	105	130	86 ± 3	88 ± 7	92 ± 4	88 ± 6	71 ± 8
Single pass of equipment does not produce significant rut.	0	147	34	72	41	52	86 ± 6	92 ± 10	91 ± 7	82 ± 12	73 ± 12
Harvest timber in a manner that minimizes significant changes to soil structure or organic matter.	S	145	35	72	38	53	90 ± 5	85 ± 12	94 ± 6	88 ± 10	83 ± 10
Cease operations when inclement weather and/or wet site conditions persist.	0	91	15	53	23	25	74 ± 9	69 ± 21	84 ± 10	85 ± 14	38 ± 18
Avoid harvesting snags when present.	0	3	0	2	1	0	72 ± 36	N/A	67 ± 40	60 ± 44	N/A
Avoid harvesting dead coarse wood when present.	S	3	0	2	1	0	72 ± 36	N/A	67 ± 40	60 ± 44	N/A
Avoid harvesting tree roots, stumps, or existing duff liter.	S	3	0	2	1	0	72 ± 36	N/A	67 ± 40	60 ± 44	N/A

Harvesting: Rehabilitation of the Project Site

Table 29. Implementation of BMPs fo	r Rehah	nilitation o				illalion	01 (110		. 0.10							
Table 23. Implementation of biving 10	T (Char	Jiillation C		Implemer					rly Implen			l l		/ Impleme	ented BM VQ	P
BMPs for Rehab	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
									%							
Overall		71	53	70	60	83	99	98	98	96	100	54	40	66	70	47
Close-off access to roads and trails until stabilized.	S	69	67	63	57	81	100	100	100	100	100	6	0	0	33	0
Install water diversion structures to deter access as needed.	0	70	62	86	50	83	100	100	100	100	100	0	0	0	0	0
Install appropriate methods of runoff control and/or sediment capture.	0	70	76	70	50	67	92	92	95	50	100	44	50	38	50	50
Mat logging debris atop critical bare soil areas, particularly during operation.	S	40	6	55	57	76	100	100	100	100	100	31	33	29	33	25
Prepare soil using disking or tilling where needed. Minimize to the extent practicable.	S	40	N/A	N/A	0	67	100	N/A	N/A	N/A	100	0	N/A	N/A	0	0
Use fertilizer, lime, or organic matter were needed to promote seed germination.	0	67	100	100	N/A	0	100	100	100	N/A	N/A	0	N/A	N/A	N/A	0
Use seed or mixtures adapted for the site, soil, and time of year.	0	80	83	92	33	75	100	100	100	100	100	60	100	0	100	0
Spread seed evenly across the area when soil moisture and site conditions are suitable.	S	88	80	100	100	50	100	100	100	100	100	0	0	N/A	N/A	0
Apply mulch cover over approximately 50 to 75% of the seeded area.	S	62	23	93	50	75	100	100	100	100	100	8	0	0	100	0
Spread woodbark or chips several inches thick when used as primary temporary groundcover (no seed).	S	78	100	100	N/A	50	100	100	100	N/A	100	0	N/A	N/A	N/A	0
Spread woodbark or chips over approximately 50 to 75% of the seeded area.	S	20	50	0	0	N/A	100	100	N/A	N/A	N/A	0	0	0	0	N/A
Use erosion control matting when/where needed.	0	0	0	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	50	0	100	N/A	N/A
Remove debris from the stream channel to meet the relevant Forest Practice Guidelines and General Statutes.	S	74	74	58	75	83	100	100	100	100	100	96	100	95	100	93
If temporary, remove the stream crossing itself.	S	90	73	82	86	97	100	100	100	100	100	88	75	100	100	67
If temporary culvert crossing, remove all fill material or prevent material from entering stream.	S	63	50	100	N/A	75	93	86	100	N/A	100	67	86	N/A	N/A	0
Re-contour the streambank edges and approach-ways to resemble natural conditions pre-installation.	S	74	67	60	60	84	98	100	92	100	100	64	50	88	100	31
Install BMPs to control, divert, and/or capture runoff/sediment along approach-ways to prevent entry to stream.	0	62	55	72	43	62	97	100	96	83	100	80	80	82	100	64
				er % is O _l					er % is O _l	otimal			Lowe	<u>er</u> % is 0	ptimal	
"N/A" indicates that an instance of tha								survey								
S: Statewide, M: Mountains, P: Piedn	nont, SI	P: Southe	eastern P	lains, C: l	Mid-Atlan	tic Coasta	al Plain									

¹⁷

DMD- (D-ll-			S	ample Size	(n)		BMP Imp	lementation	Rate & 95%	% Confidence	e Interva
BMPs for Rehab	AU	S	М	Р	SP	С	S	М	Р	SP	С
Overall		954	189	301	92	372	71 ± 3	53 ± 7	70 ± 5	59 ± 10	82 ± 4
Close-off access to roads and trails until stabilized.	S	54	12	19	7	16	67 ± 12	63 ± 24	61 ± 20	55 ± 30	75 ± 2
Install water diversion structures to deter access as needed.	0	30	13	7	4	6	68 ± 16	59 ± 24	73 ± 28	50 ± 35	70 ± 3
Install appropriate methods of runoff control and/or sediment capture.	0	54	17	27	4	6	69 ± 12	72 ± 20	68 ± 17	50 ± 35	60 ± 3
Mat logging debris atop critical bare soil areas, particularly during operation.	S	90	35	31	7	17	40 ± 10	10 ± 10	54 ± 17	55 ± 30	72 ± 2
Prepare soil using disking or tilling where needed. Minimize to the extent practicable.	S	5	0	0	2	3	44 ± 33	N/A	N/A	33 ± 40	57 ± 3
Use fertilizer, lime, or organic matter were needed to promote seed germination.	0	3	1	1	0	1	57 ± 37	60 ± 44	60 ± 44	N/A	40 ± 4
Use seed or mixtures adapted for the site, soil, and time of year.	0	25	6	12	3	4	76 ± 16	70 ± 30	82 ± 20	43 ± 37	63 ± 3
Spread seed evenly across the area when soil moisture and site conditions are suitable.	S	25	10	11	2	2	83 ± 14	72 ± 24	87 ± 20	67 ± 40	50 ± 4
Apply mulch cover over approximately 50 to 75 percent of the seeded area.	S	34	13	15	2	4	61 ± 16	29 ± 22	84 ± 18	50 ± 41	63 ± 3
Spread woodbark or chips several inches thick when used as primary temporary groundcover (no seed).	S	9	2	3	0	4	69 ± 26	67 ± 40	72 ± 36	N/A	50 ± 3
Spread woodbark or chips over approximately 50 to 75% of the seeded area.	S	5	2	1	2	0	33 ± 32	50 ± 41	40 ± 44	33 ± 40	N/A
Use erosion control matting when/where needed.	0	2	1	1	0	0	33 ± 40	40 ± 44	40 ± 44	N/A	N/A
Remove debris from the stream channel to meet FPGs and GSs.	S	171	19	50	16	86	73 ± 7	70 ± 19	57 ± 13	70 ± 21	81 ±
If temporary, remove the stream crossing itself.	S	156	15	39	14	88	89 ± 5	69 ± 21	79 ± 12	78 ± 20	95 ±
If temporary culvert crossing, remove all fill material or prevent material from entering stream.	S	24	14	2	0	8	61 ± 18	50 ± 23	67 ± 40	N/A	67 ± 2
Re-contour the streambank edges and approach-ways to resemble natural conditions pre-installation.	S	174	18	43	15	98	74 ± 6	64 ± 20	60 ± 14	58 ± 22	82 ±
Install BMPs to control, divert, and/or capture runoff/sediment along approach-ways - preventing entry to stream. "N/A" indicates that an instance of tha	0	93	11	39	14	29	62 ± 10	53 ± 25	70 ± 14	44 ± 23	61 ± 1

Harvesting: Skid Trails

Table 31. Implementation of BMPs fo	r Skid T	rails by R	Region													
			BMP	Implemer	ntation				rly Implen O RISK to			lı	mproperly & I	/ Impleme RISK to V		Р
BMPs for Skid Trails	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
									%							
Overall		79	70	82	78	86	100	100	100	100	100	12	8	18	10	17
Concentrate skidding on as few skid trails as needed.	0	84	94	86	79	77	100	100	100	100	100	12	50	9	0	17
Limit primary skid trails to 10 percent of the total working area.	S	92	95	93	93	90	100	100	100	100	100	6	0	20	0	0
Avoid widespread or random skidding patterns with repeated passes.	0	87	94	93	79	80	100	100	100	100	100	15	50	20	0	18
Minimize placement and use of skid trails in ephemeral drainages.	0	86	85	95	74	78	100	100	100	100	100	36	0	75	13	80
Minimize skid trail width and avoid two-lane trails.	S	97	97	99	93	95	100	100	100	100	100	3	0	0	13	0
Minimize the extent of gouges or trenches on the ground surface.	S	89	89	90	90	88	100	100	100	100	100	21	20	23	0	28
Establish skid trails along land contours and keep slopes to a 25% grade.	S	87	79	94	89	100	100	100	100	100	100	15	9	47	0	N/A
Install waterbars, brush barriers, turnouts or use other methods as needed.	0	57	50	64	40	75	97	96	96	100	100	25	17	27	42	0
Lap and pack down leftover logging debris atop primary skid trails - ideally during operation.	S	43	2	40	44	81	100	100	100	100	100	8	5	12	10	10
			Highe	er % is O _l	otimal			Highe	er % is Op	otimal			Lowe	<u>er</u> % is O _l	otimal	

S: Statewide, M: Mountains, P: Piedmont, SP: Southeastern Plains, C: Mid-Atlantic Coastal Plain

BMPs for Skid Trails	AU		Sa	ample Size	(n)		BMP Imp	lementation	Rate & 95%	6 Confidence	e Interval
DIVIPS IOI SKIU ITAIIS	AU	S	М	Р	SP	С	S	М	Р	SP	С
Overall		4383	1288	1378	629	1088	79 ± 1	70 ± 2	82 ± 2	78 ± 3	86 ± 2
Concentrate skidding on as few skid trails as needed.	0	201	34	76	39	52	83 ± 5	90 ± 10	84 ± 8	77 ± 13	75 ± 11
Limit primary skid trails to 10 percent of the total working area.	S	224	38	75	43	68	92 ± 4	91 ± 9	91 ± 7	89 ± 10	88 ± 8
Avoid widespread or random skidding patterns with repeated passes.	0	207	35	76	42	54	86 ± 5	90 ± 10	91 ± 7	76 ± 13	78 ± 11
Minimize placement and use of skid trails in ephemeral drainages.	0	161	33	74	31	23	85 ± 6	81 ± 13	92 ± 6	72 ± 15	74 ± 17
Minimize skid trail width and avoid two-lane trails.	S	890	283	252	121	234	96 ± 1	97 ± 2	98 ± 2	92 ± 5	95 ± 3
Minimize the extent of gouges or trenches on the ground surface.	S	971	279	251	121	320	89 ± 2	89 ± 4	89 ± 4	89 ± 6	87 ± 4
Establish skid trails along land contours and keep slopes to a 25% grade.	S	628	273	240	92	23	87 ± 3	79 ± 5	93 ± 3	88 ± 7	93 ± 11
Install waterbars, brush barriers, turnouts or use other methods as needed.	0	155	48	83	20	4	57 ± 8	50 ± 14	63 ± 10	42 ± 20	63 ± 34
Lap and pack down leftover logging debris atop primary skid trails - ideally during operation.	S	946	265	251	120	310	43 ± 3	3 ± 2	40 ± 6	44 ± 9	80 ± 4

Harvesting: Wetlands

Table 33. Implementation of BMPs for	Wetland	s by Regi	on			<u> </u>									
		ВМР	mplemer	ntation				ly Implen RISK to			l		y Impleme	ented BM VQ	Р
BMPs for Wetlands	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
Overall	64	N/A	71	66	58	100	N/A	100	100	100	22	N/A	42	20	20
		Highe	er % is O _l	otimal			Highe	er % is Op	otimal			Lowe	<u>er</u> % is O	ptimal	
"N/A" indicates that an instance of tha	t individua	al BMP in	that eco	region wa	s not obs	erved du	ring the s	urvey							
S: Statewide, M: Mountains, P: Piedn	nont, SP:	Southeas	tern Plai	ns, C: Mic	d-Atlantic	Coastal I	Plain								

Table 34. Sample size and 95% Confi	dence Inter	als for Imp	lementation	of BMPs fo	r Wetlands I	by Region							
BMPs for Wetlands		Sa	ample Size ((n)		BMP Imp	lementation	Rate & 95%	6 Confidence	e Interval			
BIMPS for Wellands	S M P SP C S M P SP C												
Overall	323	0	42	161	120	64 ± 5	N/A	70 ± 13	65 ± 7	58 ± 9			
"N/A" indicates that an instance of tha	t individual E	BMP in that	ecoregion v	vas not obse	erved during	the survey							
S: Statewide, M: Mountains, P: Piedm	ont, SP: So	utheastern	Plains, C: N	/lid-Atlantic	Coastal Pla	in	•			•			

		BMP	Implemer	ntation							Į.				P
AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
								%							
0	72	N/A	84	67	80	100	N/A	100	100	100	10	N/A	0	8	25
0	55	N/A	75	64	29	100	N/A	100	100	100	20	N/A	0	25	20
0	44	N/A	0	55	40	100	N/A	N/A	100	100	7	N/A	0	0	11
0	77	N/A	88	83	63	100	N/A	100	100	100	9	N/A	0	0	17
0	73	N/A	N/A	80	60	100	N/A	N/A	100	100	75	N/A	N/A	50	100
0	11	N/A	0	13	10	100	N/A	N/A	100	100	29	N/A	100	43	11
	0 0 0	O 72 O 55 O 44 O 77 O 73	AU S M O 72 N/A O 55 N/A O 44 N/A O 77 N/A O 73 N/A	AU S M P O 72 N/A 84 O 55 N/A 75 O 44 N/A 0 O 77 N/A 88 O 73 N/A N/A	O 72 N/A 84 67 O 55 N/A 75 64 O 44 N/A 0 55 O 77 N/A 88 83 O 73 N/A N/A 80	AU S M P SP C O 72 N/A 84 67 80 O 55 N/A 75 64 29 O 44 N/A 0 55 40 O 77 N/A 88 83 63 O 73 N/A N/A 80 60	AU S M P SP C S O 72 N/A 84 67 80 100 O 55 N/A 75 64 29 100 O 44 N/A 0 55 40 100 O 77 N/A 88 83 63 100 O 73 N/A N/A 80 60 100	AU S M P SP C S M O 72 N/A 84 67 80 100 N/A O 55 N/A 75 64 29 100 N/A O 44 N/A 0 55 40 100 N/A O 77 N/A 88 83 63 100 N/A O 73 N/A N/A 80 60 100 N/A	AU S M P SP C S M P O 72 N/A 84 67 80 100 N/A 100 O 55 N/A 75 64 29 100 N/A 100 O 44 N/A 0 55 40 100 N/A N/A O 77 N/A 88 83 63 100 N/A 100 O 73 N/A N/A 80 60 100 N/A N/A	AU S M P SP C S M P SP O 72 N/A 84 67 80 100 N/A 100 100 O 55 N/A 75 64 29 100 N/A 100 100 O 44 N/A 0 55 40 100 N/A N/A 100 O 77 N/A 88 83 63 100 N/A 100 100 O 73 N/A N/A 80 60 100 N/A N/A 100	AU S M P SP C S M P SP C O 72 N/A 84 67 80 100 N/A 100 100 100 O 55 N/A 75 64 29 100 N/A 100 100 100 O 44 N/A 0 55 40 100 N/A N/A 100 100 O 77 N/A 88 83 63 100 N/A 100 100 100 O 73 N/A N/A 80 60 100 N/A N/A 100 100	AU S M P SP C S M P SP C S O 72 N/A 84 67 80 100 N/A 100 100 100 10 O 55 N/A 75 64 29 100 N/A 100 100 100 20 O 44 N/A 0 55 40 100 N/A N/A 100 100 7 O 77 N/A 88 83 63 100 N/A 100 100 100 9 O 73 N/A N/A 80 60 100 N/A N/A 100 100 75	AU S M P SP C S M P SP C S M O 72 N/A 84 67 80 100 N/A 100 100 100 10 N/A O 55 N/A 75 64 29 100 N/A 100 100 100 20 N/A O 77 N/A 88 83 63 100 N/A 100 100 100 9 N/A O 73 N/A N/A 80 60 100 N/A N/A 100 100 75 N/A	AU S M P SP C S M P SP C S M P O 72 N/A 84 67 80 100 N/A 100 100 100 10 N/A 0 O 55 N/A 75 64 29 100 N/A 100 100 100 7 N/A 0 O 77 N/A 88 83 63 100 N/A 100 100 100 9 N/A 0 O 73 N/A N/A 80 60 100 N/A N/A 100 100 75 N/A N/A	AU S M P SP C S M P SP S

"N/A" indicates that an instance of that individual BMP in that ecoregion was not observed during the survey S: Statewide, M: Mountains, P: Piedmont, SP: Southeastern Plains, C: Mid-Atlantic Coastal Plain

DMDs for Wellender Henrichter	A11		Sa	ample Size	(n)		BMP Impl	ementation	n Rate & 95%	6 Confidence	e Interval
BMPs for Wetlands: Harvesting	AU	S	М	Р	SP	С	S	М	Р	SP	С
Minimize harvesting activity in sensitive areas, i.e., wetter than normal areas or near waterbodies.	0	112	0	19	73	20	72 ± 8	N/A	78 ± 18	66 ± 11	75 ± 18
Operate equipment during dry periods if possible. Minimize operations on saturated soils and near waterbodies.	0	44	0	8	22	14	54 ± 14	N/A	67 ± 27	62 ± 19	33 ± 22
Use appropriate harvesting equipment, methods, and/or techniques, i.e., shovel-mat systems.	0	27	0	1	11	15	45 ± 18	N/A	40 ± 44	53 ± 25	42 ± 22
Concentrate heavy equipment use to primary skid trails and decks. Minimize rutting, i.e., single pass produces more than 6 inch rut.	0	47	0	8	23	16	75 ± 12	N/A	75 ± 26	78 ± 16	60 ± 22
Minimize heavy equipment use along the edge of ditches.	0	15	0	0	10	5	69 ± 21	N/A	N/A	72 ± 24	56 ± 33
Rehabilitate areas of significant soil disturbance.	0	19	0	1	8	10	17 ± 16	N/A	40 ± 44	25 ± 26	21 ± 23

Table 37. Implementation of Mandato	1	0 101 1 100	100 111 110	tianao by	rtogion		1	D	d. Leceler					. Landle and	t l DM	<u> </u>
DMDs for Weller do.			BMP	Implemer	ntation				rly Implen ORISK to			l!	mproperly & I	Impleme		Р
BMPs for Wetlands: Mandatory BMPs for Roads	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
•									%							
Minimize number, width, and total length of permanent and temporary roads and skid trails.	0	60	N/A	N/A	0	75	N/A	N/A	N/A	N/A	100	0	N/A	N/A	0	0
Locate roads and skid trails sufficiently far from waters of the U.S.	0	100	N/A	N/A	N/A	100	N/A	N/A	N/A	N/A	100	N/A	N/A	N/A	N/A	N/A
Provide sufficient drainage to prevent restriction of water flow.	0	50	N/A	N/A	N/A	50	N/A	N/A	N/A	N/A	100	0	N/A	N/A	N/A	0
Minimize encroachment of equipment into the waters of the U.S. during road construction.	0	100	N/A	N/A	N/A	100	N/A	N/A	N/A	N/A	100	N/A	N/A	N/A	N/A	N/A
Minimize vegetation disturbance in the waters of the U.S.	0	100	N/A	N/A	N/A	100	N/A	N/A	N/A	N/A	100	N/A	N/A	N/A	N/A	N/A
Remove temporary fills completely and restore to original elevation.	0	100	N/A	N/A	N/A	100	N/A	N/A	N/A	N/A	100	N/A	N/A	N/A	N/A	N/A
			Highe	er % is O _l	otimal			Highe	er % is Op	otimal			Lowe	<u>er</u> % is O _l	otimal	
"N/A" indicates that an instance of tha S: Statewide, M: Mountains, P: Piedn							during the	survey								

BMPs for Wetlands:	AU		Sa	ample Size ((n)		BMP Impl	ementation	Rate & 959	% Confidence	e Interval
Mandatory BMPs for Roads	AU	S	М	Р	SP	С	S	М	Р	SP	С
Minimize number, width, and total length of permanent and temporary roads and skid trails.	0	5	0	0	1	4	56 ± 33	N/A	N/A	40 ± 44	63 ± 34
Locate roads and skid trails sufficiently far from waters of the U.S.	0	2	0	0	0	2	67 ± 40	N/A	N/A	N/A	67 ± 40
Provide sufficient drainage to prevent restriction of water flow.	0	2	0	0	0	2	50 ± 41	N/A	N/A	N/A	50 ± 41
Minimize encroachment of equipment into the waters of the U.S. during road construction.	0	2	0	0	0	2	67 ± 40	N/A	N/A	N/A	67 ± 40
Minimize vegetation disturbance in the waters of the U.S.	0	2	0	0	0	2	67 ± 40	N/A	N/A	N/A	67 ± 40
Remove temporary fills completely and restore to original elevation.	0	1	0	0	0	1	60 ± 44	N/A	N/A	N/A	60 ± 4

			BMP	Implemer	ntation				rly Impler O RISK to			lı	mproperly & I	/ Impleme		Р
BMPs for Wetlands: Flat Roads	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
									%							
Keep road grade as close to original land surface grade as possible.	S	100	N/A	N/A	100	100	100	N/A	N/A	100	100	N/A	N/A	N/A	N/A	N/A
Stabilize and/or harden the road surface with suitable material where high surface flows are expected.	S	0	N/A	N/A	N/A	0	N/A	N/A	N/A	N/A	N/A	0	N/A	N/A	N/A	0
Establish and maintain a grader ditch if needed.	0	100	N/A	N/A	N/A	100	100	N/A	N/A	N/A	100	N/A	N/A	N/A	N/A	N/A
Plan and implement road designs, locations, alignments and water management devices as needed to minimize hydrologic alterations.	0	100	N/A	N/A	N/A	100	100	N/A	N/A	N/A	100	N/A	N/A	N/A	N/A	N/A
Construct roads during periods of relatively dry soils when possible.	0	100	N/A	N/A	N/A	100	100	N/A	N/A	N/A	100	N/A	N/A	N/A	N/A	N/A
Minimize the lateral extent of wetland disturbance during construction.	0	100	N/A	N/A	N/A	100	100	N/A	N/A	N/A	100	N/A	N/A	N/A	N/A	N/A
Maintain a daylight corridor to allow more rapid drying of the road.	0	100	N/A	N/A	N/A	100	100	N/A	N/A	N/A	100	N/A	N/A	N/A	N/A	N//
If fill material is generated by the road construction process, place suitable mineral soil fill on the road surface or remove it from the wetland to a non-wetland area, if feasible.	0	100	N/A	N/A	N/A	100	100	N/A	N/A	N/A	100	N/A	N/A	N/A	N/A	N//
After construction is completed, stabilize disturbed areas of the roadbed with vegetation as needed.	0	0	N/A	N/A	N/A	0	N/A	N/A	N/A	N/A	N/A	0	N/A	N/A	N/A	0
Establish and maintain groundcover vegetation along road shoulders.	0	75	N/A	N/A	N/A	75	100	N/A	N/A	N/A	100	0	N/A	N/A	N/A	0
On frequently used roads, apply gravel or other suitable stabilizing material on areas where erosion and sedimentation may occur.	0	0	N/A	N/A	N/A	0	N/A	N/A	N/A	N/A	N/A	50	N/A	N/A	N/A	50
On lightly used roads, establish and maintain vegetative groundcover or other suitable stabilizing materials upon the road surface.	0	100	N/A	N/A	N/A	100	100	N/A	N/A	N/A	100	N/A	N/A	N/A	N/A	N/
Limit the depth, width and length of new minor drainage ditches to only that which is needed to provide effective minor drainage.	0	50	N/A	100	0	N/A	100	N/A	100	N/A	N/A	100	N/A	N/A	100	N/

[&]quot;N/A" indicates that an instance of that individual BMP in that ecoregion was not observed during the survey **S**: Statewide, **M**: Mountains, **P**: Piedmont, **SP**: Southeastern Plains, **C**: Mid-Atlantic Coastal Plain

			S	ample Size	(n)		BMP Imp	lementatior	Rate & 95%	% Confidence	e Interva
BMPs for Wetlands: Flat Roads	AU	S	М	Р	SP	С	S	М	Р	SP	С
Keep road grade as close to original land surface grade as possible.	S	11	0	0	7	4	87 ± 20	N/A	N/A	82 ± 26	76 ± 32
Stabilize and/or harden the road surface with suitable material where high surface flows are expected.	S	1	0	0	0	1	40 ± 44	N/A	N/A	N/A	40 ± 4
Establish and maintain a grader ditch if needed.	0	1	0	0	0	1	60 ± 44	N/A	N/A	N/A	60 ± 4
Plan and implement road designs, locations, alignments and water management devices as needed to minimize hydrologic alterations.	0	2	0	0	0	2	67 ± 40	N/A	N/A	N/A	67 ± 4
Construct roads during periods of relatively dry soils when possible.	0	1	0	0	0	1	60 ± 44	N/A	N/A	N/A	60 ± 4
Minimize the lateral extent of wetland disturbance during construction.	0	4	0	0	0	4	76 ± 32	N/A	N/A	N/A	76 ± 3
Maintain a daylight corridor to allow more rapid drying of the road.	0	4	0	0	0	4	76 ± 32	N/A	N/A	N/A	76 ± 3
If fill material is generated by the road construction process, place suitable mineral soil fill on the road surface or remove it from the wetland to a non-wetland area, if feasible.	0	1	0	0	0	1	60 ± 44	N/A	N/A	N/A	60 ± 4
After construction is completed, stabilize disturbed areas of the roadbed with vegetation as needed.	0	1	0	0	0	1	40 ± 44	N/A	N/A	N/A	40 ± 4
Establish and maintain groundcover vegetation along road shoulders.	0	4	0	0	0	4	63 ± 34	N/A	N/A	N/A	63 ± 3
On frequently used roads, apply gravel or other suitable stabilizing material on areas where erosion and sedimentation may occur.	0	2	0	0	0	2	33 ± 40	N/A	N/A	N/A	33 ± 4
On lightly used roads, establish and maintain vegetative groundcover or other suitable stabilizing materials upon the road surface.	0	2	0	0	0	2	67 ± 40	N/A	N/A	N/A	67 ± 4
Limit the depth, width and length of new minor drainage ditches to only that which is needed to provide effective minor drainage.	0	2	0	1	1	0	50 ± 41	N/A	60 ± 44	40 ± 44	N/A

S: Statewide, M: Mountains, P: Piedmont, SP: Southeastern Plains, C: Mid-Atlantic Coastal Plain

			BMP	Implemer	ntation				rly Impler O RISK to			lı	mproperly & I	/ Impleme		Р
BMPs for Wetlands: Water Management	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
									%							
Design, construct, and maintain drainage system to minimize surface runoff from entering ditches.	0	0	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	100	N/A	100	N/A	N/A
Conduct excavation and other operations during periods of relatively dry soils, if conditions allow.	0	50	N/A	0	100	N/A	100	N/A	N/A	100	N/A	100	N/A	100	N/A	N/A
Start excavation near the discharge end while leaving a plug of soil in place to serve as a temporary dam within the newly excavated ditch.	S	0	N/A	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	100	N/A	N/A	100	N/A
For initial construction or maintenance, deposit excavated material (spoil) atop existing roads or on top of old spoil locations, if possible.	S	0	N/A	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	0	N/A	N/A	0	N/A
Stabilize the spoil material as needed.	S	0	N/A	0	0	N/A	N/A	N/A	N/A	N/A	N/A	67	N/A	100	50	N/A
Reconsider re-filling or plugging the minor drainage ditchlines once silvicultural objectives have been met.	S	0	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	100	N/A	100	N/A	N/A
			Highe	er % is Op	otimal			Highe	er % is O	otimal			Lowe	<u>er</u> % is O _l	otimal	

BMPs for Wetlands:			Sa	ample Size ((n)		BMP Impl	lementation	n Rate & 95%	% Confidenc	e Interva
Water Management	AU	S	М	Р	SP	С	S	М	Р	SP	С
Design, construct, and maintain drainage system to minimize surface runoff from entering into the ditch(es).	0	1	0	1	0	0	40 ± 44	N/A	40 ± 44	N/A	N/A
Conduct excavation and other operations during periods of relatively dry soils, if conditions allow.	0	2	0	1	1	0	50 ± 41	N/A	40 ± 44	60 ± 44	N/A
Start excavation near the discharge end while leaving a plug of soil in place to serve as a temporary dam within the newly excavated ditch.	S	1	0	0	1	0	40 ± 44	N/A	N/A	40 ± 44	N/A
For initial construction or maintenance, deposit excavated material (spoil) atop existing roads or on top of old spoil locations, if possible.	S	1	0	0	1	0	40 ± 44	N/A	N/A	40 ± 44	N/A
Stabilize the spoil material as needed.	S	3	0	1	2	0	28 ± 36	N/A	40 ± 44	33 ± 40	N/A
Reconsider re-filling or plugging the minor drainage ditch(es) once silvicultural objectives have been met.	S	1	0	1	0	0	40 ± 44	N/A	40 ± 44	N/A	N/A

Roads and Access

			BMP	Implemer	ntation				rly Impler O RISK to			lı	mproperly &	/ Impleme		Р
BMPs for Roads	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
									%							
Overall		85	89	86	85	76	100	100	100	100	100	14	27	16	6	10
Minimize road width. Light-duty roads: 10 to 14 feet wide.	S	100	N/A	100	100	100	100	N/A	100	100	100	N/A	N/A	N/A	N/A	N/A
Minimize road width. Heavy-duty roads: 14 to 20 feet wide.	S	95	100	100	100	80	100	100	100	100	100	0	N/A	N/A	N/A	0
Keep grade slopes to 10% or less when conditions allow.	S	100	100	100	100	100	100	100	100	100	100	N/A	N/A	N/A	N/A	N/A
Limit road segment lengths to 200 feet or less for steeper grades.	S	100	100	100	N/A	N/A	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Limit height of side / cut banks to 5 feet or less when conditions allow.	S	100	100	100	N/A	N/A	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Install cut bank no steeper than 2:1 with loose soils when conditions allow.	S	0	N/A	N/A	N/A	0	N/A	N/A	N/A	N/A	N/A	0	N/A	N/A	N/A	0
Install cut bank no steeper than 0.5:1 with tight soils when conditions allow.	S	60	57	67	N/A	N/A	100	100	100	N/A	N/A	0	0	0	N/A	N/A
Minimize soil disturbance and the amount of road at any stream crossing.	S	73	75	60	67	100	100	100	100	100	100	100	100	100	100	N/A
Use rock, stone, wooden mats, or other suitable materials for at least 50 feet from public road.	S	73	100	80	55	61	100	100	100	100	100	0	N/A	0	0	0
Stabilize bare soil areas using suitable technique (e.g., seed, mulch, riprap, etc.).	S	40	60	42	25	36	100	100	100	100	100	18	50	17	17	14
In low lying areas, keep the roadbed as close to the original	S	88	N/A	100	100	79	100	N/A	100	100	100	0	N/A	N/A	N/A	0
ground level as possible. In low lying areas, provide adequate cross drainage when fill material is used.	S	75	N/A	N/A	100	71	100	N/A	N/A	100	100	0	N/A	N/A	N/A	0
Use insloping, outsloping and/or crowning techniques as needed.	0	73	86	77	67	57	100	100	100	100	100	0	0	0	0	0
Install diversion or other structures to control and capture runoff (e.g., broad-based dips, settlement basin, etc.).	0	62	71	78	0	0	100	100	100	N/A	N/A	21	50	20	0	25
Stabilize and/or harden the road surface - using geotextile fabric beneath - as needed.	0	59	86	66	29	38	100	100	100	100	100	5	100	0	0	0
Rehabilitate and stabilize the road and side / cut banks according to the standards of FPG .0209.	0	79	86	100	N/A	60	100	100	100	N/A	100	67	100	N/A	N/A	50
Take prompt action to protect water quality if BMPs are not properly functioning.	0	80	100	67	N/A	N/A	100	100	100	N/A	N/A	100	N/A	100	N/A	N/A
Clean out built-up silt and sediment from retention areas as needed.	0	100	100	100	N/A	N/A	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maintain an open daylight corridor.	0	83	73	82	90	90	100	100	100	100	100	0	0	0	0	0
Maintain a road surface that provides good runoff control, water quality protection, and vehicle access.	0	87	93	88	100	50	100	100	100	100	100	22	0	25	N/A	25
Close access to roads when suitable to minimize unnecessary use.	0	73	86	90	60	25	100	100	100	100	100	0	0	0	0	0

"NI/A" indicates that an instance of the				er % is Op					er % is Op	otimal			Lowe	<u>r</u> % is O _l	otimal	
Plan adequate right-of-way width to daylight the road for drying.	0	88	87	85	89	94	100	100	100	100	100	0	0	0	0	0
Construct road to drain naturally - not into streams or waterbodies.	0	95	94	93	100	100	100	100	100	100	100	67	0	100	N/A	N/A
Plan the road to minimize the amount of cut and/or fill needed.	0	98	93	100	100	100	100	100	100	100	100	100	100	N/A	N/A	N/A
Keep road atop firm, well-drained soils.	0	98	94	100	100	93	100	100	100	100	100	0	0	N/A	N/A	0
In steep terrain, construct outsloped road with broad-based dips when conditions allow.	0	67	67	67	N/A	N/A	100	100	100	N/A	N/A	25	0	100	N/A	N/A
In steep terrain, establish road along gentle hill slopes - just below the ridgeline.	0	100	100	100	N/A	N/A	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Establish roads along the land contours.	0	97	100	97	92	100	100	100	100	100	100	0	N/A	0	0	N/A
Minimize soil disturbance and road placement within ephemeral drainages.	0	95	89	100	100	75	100	100	100	100	100	50	100	N/A	N/A	0
Minimize the number of stream crossings. Avoid crossings.	0	98	100	100	100	88	100	100	100	100	100	100	N/A	N/A	N/A	100
Construct roads at least one year before use.	0	89	100	79	92	100	100	100	100	100	100	0	N/A	0	0	N/A
Use information resources to exam site and determine best location for the road.	0	100	N/A	100	N/A	N/A	100	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Perform road and ditch maintenance during times when heavy precipitation is not expected.	0	75	50	N/A	N/A	100	100	100	N/A	N/A	100	0	0	N/A	N/A	N/A

[&]quot;N/A" indicates that an instance of that individual BMP in that ecoregion was not observed during the survey

S: Statewide, M: Mountains, P: Piedmont, SP: Southeastern Plains, C: Mid-Atlantic Coastal Plain

DIAD (D)			S	ample Size	(n)		BMP Implementation Rate & 95% Confidence Interval						
BMPs for Roads	AU	S	М	Р	SP	С	S	М	Р	SP	С		
Overall		1,228	237	569	217	205	85 ± 2	88 ± 4	86 ± 3	84 ± 5	76 ± 6		
Minimize road width. Light-duty	S	27	0	12	10	5	94 ± 10	N/A	88 ± 18	86 ± 21	78 ± 30		
roads: 10 to 14 feet wide. Minimize road width. Heavy-duty													
roads: 14 to 20 feet wide. Keep grade slopes to 10% or less	S	66	9	30	12	15	93 ± 6	85 ± 22	94 ± 9	88 ± 18	74 ± 20		
when conditions allow.	S	60	6	33	13	8	97 ± 5	80 ± 28	95 ± 8	89 ± 17	84 ± 24		
Limit road segment lengths to 200 feet or less for steeper grades.	S	9	4	5	0	0	85 ± 22	76 ± 32	78 ± 30	N/A	N/A		
Limit height of side / cut banks to 5 feet or less when conditions allow.	S	8	5	3	0	0	84 ± 24	78 ± 30	72 ± 36	N/A	N/A		
Install cut bank no steeper than 2:1 with loose soils when conditions allow.	S	1	0	0	0	1	40 ± 44	N/A	N/A	N/A	40 ± 44		
Install cut bank no steeper than 0.5:1 with tight soils when conditions allow.	S	10	7	3	0	0	57 ± 26	55 ± 30	57 ± 37	N/A	N/A		
Minimize soil disturbance and the amount of road at any stream crossing.	S	15	4	5	3	3	69 ± 21	63 ± 34	56 ± 33	57 ± 37	72 ± 36		
Use rock, stone, wooden mats, or other suitable materials for at least 50 feet from public road.	S	109	9	60	22	18	73 ± 8	85 ± 22	78 ± 10	54 ± 19	59 ± 2′		
Stabilize bare soil areas using suitable technique (e.g., seed, mulch, riprap, etc.).	S	55	5	31	8	11	41 ± 13	56 ± 33	43 ± 16	33 ± 27	40 ± 25		
In low lying areas, keep the roadbed as close to the original ground level as possible.	S	24	0	1	9	14	82 ± 15	N/A	60 ± 44	85 ± 22	72 ± 2′		
In low lying areas, provide adequate cross drainage when fill material is used.	S	8	0	0	1	7	67 ± 27	N/A	N/A	60 ± 44	64 ± 29		
Use insloping, outsloping and/or crowning techniques as needed.	0	30	7	13	3	7	71 ± 15	73 ± 28	71 ± 22	57 ± 37	55 ± 30		
Install diversion or other structures to control and capture runoff (e.g., broad-based dips, settlement basin, etc.).	0	37	7	23	3	4	61 ± 15	64 ± 29	74 ± 17	28 ± 36	24 ± 32		
Stabilize and/or harden the road surface - using geotextile fabric beneath - as needed.	0	51	7	29	7	8	58 ± 13	73 ± 28	64 ± 16	36 ± 29	42 ± 28		
Rehabilitate and stabilize the road and side / cut banks according to the standards of FPG .0209.	0	14	7	2	0	5	72 ± 21	73 ± 28	67 ± 40	N/A	56 ± 33		
Take prompt action to protect water quality if BMPs are not properly functioning.	0	10	4	6	0	0	72 ± 24	76 ± 32	60 ± 31	N/A	N/A		
Clean out built-up silt and sediment from retention areas as needed.	0	3	2	1	0	0	72 ± 36	67 ± 40	60 ± 44	N/A	N/A		
Maintain an open daylight corridor.	0	64	11	33	10	10	81 ± 9	67 ± 24	79 ± 13	79 ± 23	79 ± 23		
Maintain a road surface that provides good runoff control, water quality protection, and vehicle access.	0	70	15	33	14	8	85 ± 8	84 ± 18	84 ± 12	89 ± 17	50 ± 28		
Close access to roads when suitable to minimize unnecessary use.	0	26	7	10	5	4	70 ± 17	73 ± 28	79 ± 23	56 ± 33	37 ± 34		
Perform road and ditch maintenance during times when heavy precipitation is not expected.	0	4	2	0	0	2	63 ± 34	50 ± 41	N/A	N/A	67 ± 40		
Use information resources to exam site and determine best location for the road.	0	1	0	1	0	0	60 ± 44	N/A	60 ± 44	N/A	N/A		

Construct roads at least one year before use.	0	38	3	14	13	8	86 ± 11	72 ± 36	72 ± 21	83 ± 19	84 ± 24
Minimize the number of stream crossings. Avoid crossings.	0	57	14	26	9	8	95 ± 6	89 ± 17	94 ± 10	85 ± 22	75 ± 26
Minimize soil disturbance and road placement within ephemeral drainages.	0	44	9	22	9	4	92 ± 8	77 ± 24	93 ± 12	85 ± 22	63 ± 34
Establish roads along the land contours.	0	69	14	35	13	7	95 ± 6	89 ± 17	92 ± 9	83 ± 19	82 ± 26
In steep terrain, establish road along gentle hill slopes - just below the ridgeline.	0	7	6	1	0	0	82 ± 26	80 ± 28	60 ± 44	N/A	N/A
In steep terrain, construct outsloped road with broad-based dips when conditions allow.	0	12	9	3	0	0	63 ± 24	62 ± 27	57 ± 37	N/A	N/A
Keep road atop firm, well-drained soils.	0	96	17	42	23	14	96 ± 4	86 ± 16	96 ± 7	93 ± 11	84 ± 19
Plan the road to minimize the amount of cut and/or fill needed.	0	51	15	22	6	8	95 ± 7	84 ± 18	93 ± 12	80 ± 28	84 ± 24
Construct road to drain naturally - not into streams or waterbodies.	0	63	17	30	6	10	93 ± 7	86 ± 16	88 ± 12	80 ± 28	86 ± 21
Plan adequate right-of-way width to daylight the road for drying.	0	89	15	40	18	16	86 ± 7	79 ± 19	82 ± 12	82 ± 17	85 ± 17

[&]quot;N/A" indicates that an instance of that individual BMP in that ecoregion was not observed during the survey

S: Statewide, M: Mountains, P: Piedmont, SP: Southeastern Plains, C: Mid-Atlantic Coastal Plain

Stream Crossings

BMPs for Stream Crossings General		BMP Implementation							rly Impler DRISK to		Improperly Implemented BMP & RISK to WQ					
	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
									%							
Overall		79	75	78	72	83	100	100	100	99	100	64	76	63	67	54
Avoid stream crossings when possible.	0	70	60	79	64	64	100	100	100	100	100	81	100	64	100	77
Minimize the number of crossings.	0	71	63	75	85	66	99	92	100	100	100	80	100	67	100	75
Consider crossing site when selecting crossing type.	S	90	85	86	91	95	100	100	100	100	100	84	100	100	100	25
Designate stream crossing location(s) using flagging, paint, or other suitable marking.	S	23	6	27	7	30	100	100	100	100	100	11	27	11	15	0
Install crossing at relatively straight stream section.	S	95	97	93	100	97	100	100	100	100	100	11	100	0	N/A	0
Minimize approach-way slope/grade.	S	94	100	87	93	98	100	100	100	100	100	30	N/A	38	0	0
Install crossing at a right-angle to the stream channel.	S	94	89	92	100	98	100	100	100	100	100	25	50	17	N/A	0
Minimize alteration of stream depth, width, gradient, and capacity.	S	76	70	72	69	83	100	100	100	100	100	94	100	100	75	86
Construct, install, and remove crossing during low-flow if possible.	S	100	N/A	100	100	100	100	N/A	100	100	100	N/A	N/A	N/A	N/A	N/A
Stabilize approach-ways using appropriate means (e.g., slash, laps, rock, etc.).	S	65	54	66	57	69	99	100	100	88	100	47	100	30	67	30
Rehabilitate crossing area as soon as possible.	S	61	61	44	73	68	97	100	88	100	100	86	89	95	100	72
			Highe	er % is Oi	otimal			Highe	er % is O	otimal	Lower % is Optimal					

S: Statewide, M: Mountains, P: Piedmont, SP: Southeastern Plains, C: Mid-Atlantic Coastal Plain

BMPs for Stream Crossings General			Sa	ample Size	(n)	BMP Implementation Rate & 95% Confidence Interval						
	AU	S	M	Р	SP	С	S	М	Р	SP	С	
Overall		2,948	561	1235	202	950	79 ± 1	75 ± 3	78 ± 3	72 ± 3	82 ± 5	
Avoid stream crossings when possible.	0	119	20	52	11	36	69 ± 8	63 ± 15	58 ± 20	77 ± 11	60 ± 25	
Minimize the number of crossings.	0	103	19	36	13	35	70 ± 9	64 ± 15	61 ± 20	73 ± 14	77 ± 21	
Consider crossing site when selecting crossing type.	S	185	34	64	11	76	89 ± 5	93 ± 6	82 ± 13	84 ± 9	80 ± 22	
Designate stream crossing location(s) using flagging, paint, or other suitable marking.	S	114	16	51	14	33	24 ± 8	32 ± 15	15 ± 17	29 ± 12	16 ± 19	
Install crossing at relatively straight stream section.	S	199	38	80	15	66	95 ± 3	94 ± 6	93 ± 9	91 ± 6	90 ± 16	
Minimize approach-way slope/grade.	S	164	41	63	15	45	93 ± 4	94 ± 8	96 ± 7	85 ± 9	84 ± 18	
Install crossing at a right-angle to the stream channel.	S	207	38	72	15	82	93 ± 4	95 ± 5	86 ± 11	90 ± 7	90 ± 16	
Minimize alteration of stream depth, width, gradient, and capacity.	S	217	47	75	13	82	75 ± 6	81 ± 8	69 ± 13	71 ± 10	65 ± 23	
Construct, install, and remove crossing during low-flow if possible.	S	18	0	13	1	4	91 ± 14	N/A	76 ± 32	89 ± 17	60 ± 44	
Stabilize approach-ways using appropriate means (e.g., slash, laps, rock, etc.).	S	224	35	89	14	86	64 ± 6	68 ± 10	54 ± 16	66 ± 10	56 ± 23	
Rehabilitate crossing area as soon as possible.	S	127	23	36	11	57	60 ± 8	67 ± 12	59 ± 19	45 ± 15	67 ± 24	

BMPs for Stream Crossings Bridgemats		BMP Implementation							rly Impler O RISK to		Improperly Implemented BMP & RISK to WQ					
	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
		%														
Select a stream crossing location with a narrow channel width.	S	100	100	100	100	100	99	100	97	100	100	N/A	N/A	N/A	N/A	N/A
Select a stream crossing location with firm, stable streambanks.	S	97	100	97	50	100	99	100	97	100	100	67	N/A	100	50	N/A
Select a stream crossing location that has solid footing to support mats and equipment.	S	97	100	95	75	100	100	100	100	100	100	100	N/A	100	100	N/A
Select a stream crossing location that has high, level ground on each side.	S	97	100	95	75	100	100	100	100	100	100	33	N/A	50	0	N/A
Create a solid-surface with panels butted tightly together.	S	53	50	50	100	60	100	100	100	100	100	94	100	92	N/A	100
Keep equipment out of the channel during installation and removal unless unavoidable.	S	84	75	80	50	100	100	100	100	100	100	100	100	100	100	N/A
Minimize over-hang from logs,	S	53	0	67	100	33	100	N/A	100	100	100	100	100	100	N/A	100

BMPs for Stream Crossings			Sa	ample Size	(n)		BMP Imp	lementation	Rate & 95%	6 Confidence	e Interval
Bridgemats	AU	S	М	Р	SP	С	S	М	Р	SP	С
Select a stream crossing location with a narrow channel width.	S	87	4	38	4	41	98 ± 4	96 ± 7	76 ± 32	95 ± 8	76 ± 32
Select a stream crossing location with firm, stable streambanks.	S	114	4	38	4	68	96 ± 4	97 ± 5	76 ± 32	93 ± 9	50 ± 35
Select a stream crossing location that has solid footing to support mats and equipment.	S	106	4	38	4	60	96 ± 4	97 ± 5	76 ± 32	91 ± 9	63 ± 34
Select a stream crossing location that has high, level ground on each side.	S	99	4	38	4	53	95 ± 5	97 ± 5	76 ± 32	91 ± 9	63 ± 34
Create a solid-surface with panels butted tightly together.	S	34	4	24	1	5	53 ± 16	56 ± 33	50 ± 35	50 ± 19	60 ± 44
Keep equipment out of the channel during installation and removal unless unavoidable.	S	51	4	30	2	15	82 ± 10	90 ± 16	63 ± 34	77 ± 15	50 ± 4′
Minimize over-hang from logs, trees, or trucks/trailers.	S	19	3	12	1	3	52 ± 20	43 ± 37	28 ± 36	63 ± 24	60 ± 44

Table 49. Implementation of BMPs for	1 001101	t ou oum	010001119	o by riog	1011		1								D14D 0 5	
			BMP	Implemer	ntation		Proper	ly Implen	nented &	NO RISK	to WQ	Improp	perly Impl	lemented WQ	BMP & F	USK to
BMPs for Stream Crossings Culverts	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
									%							
Use appropriate number/size of culverts.	S	82	75	93	67	60	100	100	100	100	100	78	75	100	100	50
Use culvert that extends at least 12 inches beyond the edge of the fill material. If shorter, inlet/outlet headwalls adequately protected.	S	73	65	89	67	20	100	100	100	100	100	57	83	33	100	25
Use at least a 15 inch culvert.	S	82	67	96	100	40	100	100	100	100	100	56	40	100	N/A	67
Place culvert in the center of existing or expected water flow.	S	97	92	100	100	100	100	100	100	100	100	0	0	N/A	N/A	N/A
Set culvert(s) with appropriate downslope grade.	S	93	96	93	50	100	100	100	100	100	100	50	0	50	100	N/A
Minimize the height that water drops from the outlet of the culvert.	S	96	94	100	67	100	100	100	100	100	100	50	0	N/A	100	N/A
Backfill material atop culvert at least 12 inches.	S	90	88	96	50	80	100	100	100	100	100	0	0	0	0	0
Pack backfill material down tightly, avoiding material with excessive debris.	S	94	87	96	100	100	100	100	100	100	100	33	50	0	N/A	N/A
Protect the inlet/outlet of the culvert/fill material with suitable stabilization measures.	S	67	47	85	33	60	100	100	100	100	100	94	89	100	100	100
Install crossing to allow floodwaters to flow around crossing as needed.	S	40	67	40	67	0	100	100	100	100	N/A	56	0	100	100	25
Use surface hardening materials on the culvert and approach-ways as needed.	s	69	50	85	67	60	100	100	100	100	100	56	56	50	100	50
"N/A" indicates that an instance of that				er % is O _l	otimal	•		Highe	er % is O	otimal			Lowe	<u>er</u> % is O _l	otimal	

BMPs for Stream Crossings			Sa	ample Size	(n)		BMP Imp	lementation	Rate & 95%	6 Confidence	e Interval
Culverts	AU	S	М	Р	SP	С	S	М	Р	SP	С
Use appropriate number/size of culverts.	S	51	16	27	3	5	80 ± 11	56 ± 33	70 ± 21	87 ± 13	57 ± 37
Use culvert that extends at least 12 inches beyond the edge of the fill material. If shorter, inlet/outlet headwalls adequately protected.	S	52	17	27	3	5	71 ± 12	33 ± 32	62 ± 21	84 ± 14	57 ± 37
Use at least a 15 inch culvert.	S	50	15	27	3	5	80 ± 11	44 ± 33	63 ± 22	91 ± 11	72 ± 36
Place culvert in the center of existing or expected water flow.	S	59	26	25	3	5	94 ± 6	78 ± 30	87 ± 13	93 ± 11	72 ± 36
Set culvert(s) with appropriate downslope grade.	S	59	25	27	2	5	91 ± 8	78 ± 30	90 ± 12	87 ± 13	50 ± 41
Minimize the height that water drops from the outlet of the culvert.	S	51	16	27	3	5	93 ± 7	78 ± 30	85 ± 17	94 ± 10	57 ± 37
Backfill material atop culvert at least 12 inches.	S	51	17	27	2	5	87 ± 9	67 ± 32	81 ± 18	91 ± 11	50 ± 41
Pack backfill material down tightly, avoiding material with excessive debris.	S	49	15	27	2	5	91 ± 8	78 ± 30	79 ± 19	91 ± 11	67 ± 40
Protect the inlet/outlet of the culvert/fill material with suitable stabilization measures.	S	52	17	27	3	5	66 ± 12	56 ± 33	48 ± 21	81 ± 14	43 ± 37
Install crossing to allow floodwaters to flow around crossing as needed.	S	15	3	5	3	4	42 ± 22	24 ± 32	57 ± 37	44 ± 33	57 ± 37
Use surface hardening materials on the culvert and approach ways as needed.	S	52	18	26	3	5	68 ± 12	56 ± 33	50 ± 21	80 ± 15	57 ± 37

DMD (O)			BMP	Implemer	ntation				rly Impler O RISK to			lr	mproperly & I	Impleme		Р
BMPs for Stream Crossings – Fords	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
									%							
Do not use ford crossings on skid trail crossings. Use only for truck access.	S	28	40	43	0	0	100	100	100	N/A	N/A	100	100	100	100	100
Install at location with relatively low streambanks.	S	87	100	71	N/A	100	100	100	100	N/A	100	100	N/A	100	N/A	N/A
Install at location with solid and level stream bottom.	S	56	67	57	0	50	100	100	100	N/A	100	100	100	100	100	100
Install at straight section of stream channel.	S	94	80	100	N/A	100	100	100	100	N/A	100	100	100	N/A	N/A	N/A
Use geotextile fabric as underlayment as needed.	S	0	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	100	N/A	100	N/A	N/A
Use clean hardening materials on vehicle traffic surface.	S	71	100	100	N/A	0	100	100	100	N/A	N/A	100	N/A	N/A	N/A	100
Spread hardening materials evenly - avoid dips, humps, or ruts.	S	100	100	100	N/A	N/A	100	100	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Install ford to allow passage of natural streamflow, particularly for low-flow or dry periods.	S	38	50	43	0	0	100	100	100	N/A	N/A	100	100	100	100	100
Establish permanent groundcover over at least 80% of the approachway area within the first 50 feet.	S	15	33	13	0	0	100	100	100	N/A	N/A	59	50	29	100	100
			Highe	er % is O	otimal			Highe	er % is O	otimal			Lowe	r % is O	otimal	

Table 52. Sample size and 95% Conf	idence	Intervals for	· Implement	ation of BMI	Ps for Ford	Stream Cro	ssings by R	egion			
BMPs for Stream Crossings	A11		Sa	ample Size	(n)		BMP Imp	lementation	Rate & 95%	% Confidence	e Interval
Fords	AU	S	M	Р	SP	С	S	М	Р	SP	С
Do not use ford crossings on skid trail crossings. Use only for truck access.	S	18	5	7	1	5	32 ± 20	22 ± 30	44 ± 33	45 ± 30	40 ± 44
Install at location with relatively low streambanks.	S	15	5	7	0	3	79 ± 19	72 ± 36	78 ± 30	64 ± 29	N/A
Install at location with solid and level stream bottom.	S	18	6	7	1	4	55 ± 21	50 ± 35	60 ± 31	55 ± 30	40 ± 44
Install at straight section of stream channel.	S	16	5	7	0	4	85 ± 17	76 ± 32	67 ± 32	82 ± 26	N/A
Use geotextile fabric as underlayment as needed.	S	2	0	2	0	0	33 ± 40	N/A	N/A	33 ± 40	N/A
Use clean hardening materials on vehicle traffic surface.	S	7	2	3	0	2	64 ± 29	33 ± 40	67 ± 40	72 ± 36	N/A
Spread hardening materials evenly - avoid dips, humps, or ruts.	S	6	3	3	0	0	80 ± 28	N/A	72 ± 36	72 ± 36	N/A
Install ford to allow passage of natural streamflow, particularly for low-flow or dry periods.	S	16	6	7	1	2	40 ± 22	33 ± 40	50 ± 31	45 ± 30	40 ± 44
Establish permanent groundcover over at least 80% of the approachway area within the first 50 feet.	S	20	6	8	1	5	21 ± 17	22 ± 30	40 ± 31	25 ± 26	40 ± 44
"N/A" indicates that an instance of that	t individ	dual BMP in	that ecoreg	jion was not	observed o	during the su	urvey				
S: Statewide, M: Mountains, P: Piedn	nont, SI	P: Southeas	stern Plains,	C: Mid-Atla	ntic Coasta	l Plain					

			BMP	Implemer	ntation				rly Impler O RISK to			lı	mproperly & l	/ Impleme		P
BMPs for Stream Crossings Poles	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
									%							
Maintain water flow through the pole crossing.	S	9	N/A	0	0	25	100	N/A	N/A	N/A	100	100	N/A	100	100	100
Protect the integrity of the channel banks (intact and stable).	S	50	N/A	38	50	75	100	N/A	100	100	100	86	N/A	100	0	100
Use logs that are delimbed and topped.	S	77	N/A	57	100	100	100	N/A	100	100	100	100	N/A	100	N/A	N/A
Use logs that are free of soil or other debris.	S	50	N/A	33	N/A	100	100	N/A	100	N/A	100	100	N/A	100	N/A	N/A
Use logs large enough to stack loosely.	S	31	N/A	14	67	33	100	N/A	100	100	100	89	N/A	83	100	100
Do not place soil within or on top of the pole crossing.	S	50	N/A	43	N/A	100	100	N/A	100	N/A	100	100	N/A	100	N/A	N/A
Install pole crossing to an elevation higher than the adjacent channel or bank.	S	36	N/A	29	0	67	100	N/A	100	N/A	100	86	N/A	100	100	0
Pack down limbs, tops, slash, or other woody material atop the approach-ways.	S	47	N/A	30	67	75	100	N/A	100	100	100	22	N/A	14	100	0
Remove the pole crossing immediately following use or when high-flows are expected.	S	36	N/A	25	100	0	100	N/A	100	100	N/A	100	N/A	100	N/A	100

S: Statewide, M: Mountains, P: Piedmont, SP: Southeastern Plains, C: Mid-Atlantic Coastal Plain

BMPs for Stream Crossings			Sa	ample Size	(n)		BMP Imp	lementation	Rate & 95°	% Confidence	e Interval
Poles	AU	S	М	Р	SP	С	S	M	Р	SP	С
Maintain water flow through the pole crossing.	S	11	0	6	1	4	20 ± 22	37 ± 34	N/A	20 ± 28	40 ± 44
Protect the integrity of the channel banks (intact and stable).	S	14	0	8	2	4	50 ± 23	63 ± 34	N/A	42 ± 28	50 ± 41
Use logs that are delimbed and topped.	S	13	0	7	3	3	71 ± 22	72 ± 36	N/A	55 ± 30	72 ± 36
Use logs that are free of soil or other debris.	S	4	0	3	0	1	50 ± 35	60 ± 44	N/A	43 ± 37	N/A
Use logs large enough to stack loosely.	S	13	0	7	3	3	35 ± 23	43 ± 37	N/A	27 ± 28	57 ± 37
Do not place soil within or on top of the pole crossing.	S	8	0	7	0	1	50 ± 28	60 ± 44	N/A	45 ± 30	N/A
Install pole crossing to an elevation higher than the adjacent channel or bank.	S	11	0	7	1	3	40 ± 25	57 ± 37	N/A	36 ± 29	40 ± 44
Pack down limbs, tops, slash, or other woody material atop the approach-ways.	S	17	0	10	3	4	48 ± 21	63 ± 34	N/A	36 ± 26	57 ± 37
Remove the pole crossing immediately following use or when high-flows are expected.	S	11	0	8	2	1	40 ± 25	40 ± 44	N/A	33 ± 27	67 ± 40

Streamside Management Zones (SMZs)

Table 55. Implementation of BMPs for	r Strear	nside Ma	ınagemei	nt Zones	by Regio	n										
			BMP	Impleme	ntation				rly Impler O RISK to			lr	nproperly ع	/ Impleme		IP
BMPs for SMZs	AU	S	М	Р	SP	С	S	M	Р	SP	С	S	M	P	SP	С
Overall		86	72	91	77	87	100	100	% 100	99	100	49	63	54	41	34
Conduct operation during dry soil conditions when possible, limiting heavy equipment use.	S	88	N/A	N/A	50	100	100	N/A	N/A	100	100	100	N/A	N/A	100	N/A
Avoid heavy equipment use when braided channels are close together.	S	75	N/A	N/A	67	100	100	N/A	N/A	100	100	100	N/A	N/A	100	N/A
Establish SMZ from the outermost channel limits, not from innermost channel bank.	S	100	N/A	N/A	100	100	91	N/A	N/A	80	100	N/A	N/A	N/A	N/A	N/A
Limit heavy equipment use along ditch edge, maintaining structural integrity.	0	90	N/A	100	94	88	100	N/A	100	100	100	60	N/A	N/A	100	50
During temporary ditch crossing installation and use, minimize erosion and sediment runoff.	0	87	N/A	100	83	88	100	N/A	100	100	100	80	N/A	N/A	100	75
During temporary ditch crossing installation and use, avoid altering water flow.	S	74	N/A	0	9	82	100	N/A	N/A	100	100	59	N/A	0	10	89
Minimize disturbance to the soil and groundcover within the ephemeral stream area.	S	85	79	89	77	79	100	100	100	100	100	34	15	58	0	17
Mark SMZs perimeter clearly using paint, flagging, or other means.	S	58	28	73	33	44	100	100	100	100	100	6	14	7	6	0
Avoid roads, skid trails, decks, and portable sawmills inside the SMZ.	S	89	69	93	81	97	100	100	100	100	100	37	71	35	11	0
Keep roads, skid trails, decks, and portable sawmills at least 10 feet away from the stream when placement in SMZ is unavoidable.	S	77	81	100	67	70	100	100	100	100	100	33	60	N/A	100	0
Limit heavy equipment use within 10 feet of the edges of streams and waterbodies.	S	87	77	94	72	92	100	100	100	100	100	48	85	47	40	0
Maintain approximately half of the pre-harvest vegetative canopy cover within the SMZ.	S	83	75	91	61	87	99	100	100	96	100	62	73	71	57	40
Minimize disturbance to the mid- level and understory if removing significant overstory.	S	89	68	93	81	97	99	100	100	95	100	69	46	83	77	0
Allow no more than 20% evenly distributed bare soil surface within the SMZ.	0	94	96	96	85	98	100	98	100	100	100	24	50	55	0	0
Fell and remove trees away from the stream or waterbody.	S	89	68	90	89	98	100	100	100	100	100	67	79	67	58	0
Avoid gouging soil in a manner that could funnel runoff and transport sediment to the waterbodies.	S	92	86	94	84	100	100	100	100	100	100	74	100	84	53	N/A
Service and refuel equipment outside of the SMZ, unless mechanical failure requires repair. Control fluids as needed.	S	100	100	100	100	100	100	100	100	100	100	N/A	N/A	N/A	N/A	N/A
Keep logging debris out of stream or remove promptly if introduced when operating in the SMZ (not at crossing).	S	88	67	90	87	96	100	100	100	99	100	83	100	72	79	100
Wrap SMZ around the head of the intermittent or perennial stream, at the ephemeral transition.	S	87	63	90	100	71	100	100	100	100	100	85	67	100	N/A	80
SMZ width sufficient to filter upslope pollutants and prevent stream or waterbody sedimentation/contamination.	S	91	67	96	92	90	99	100	99	100	100	81	94	100	89	0

SMZ width sufficient to provide stream shade and prevent adverse temperature fluctuations.	S	87	79	92	76	86	100	100	100	100	100	96	91	96	96	100
			Highe	er % is O	otimal			Highe	er % is O	otimal			Lowe	<u>er</u> % is 0	otimal	
"N/A" indicates that an instance of tha	t individ	dual BMP	in that e	coregion	was not	observed	I during th	ne survey	1							
S: Statewide, M: Mountains, P: Piedm	ont, SI	P: Southe	astern P	lains, C:	Mid-Atlar	ntic Coas	tal Plain									

DMD - for OMZ-				Sample Size	•		BMP Impl	ementation	Rate & 95%	Confidence	e Interval
BMPs for SMZs	AU	S	М	Р	SP	С	S	М	Р	SP	С
Overall		6,668	694	3,802	1,225	947	86 ± 1	72 ± 3	91 ± 1	77 ± 2	87 ± 2
Conduct operation during dry soil conditions when possible, limiting heavy equipment use.	S	8	0	0	2	6	75 ± 26	N/A	N/A	50 ± 41	80 ± 2
Avoid heavy equipment use when braided channels are close together.	S	4	0	0	3	1	63 ± 34	N/A	N/A	57 ± 37	60 ± 4
Establish SMZ from the outermost channel limits, not from innermost channel bank.	S	11	0	0	5	6	87 ± 20	N/A	N/A	78 ± 30	80 ± 2
Limit heavy equipment use along ditch edge, maintaining structural integrity.	0	51	0	1	16	34	87 ± 9	N/A	60 ± 44	85 ± 17	84 ± 1
During temporary ditch crossing installation and use, minimize erosion and sediment runoff.	0	39	0	1	6	32	84 ± 11	N/A	60 ± 44	70 ± 30	83 ± 1
During temporary ditch crossing installation and use, avoid altering water flow.	S	110	0	1	11	98	73 ± 8	N/A	40 ± 44	20 ± 22	80 ± 8
Minimize disturbance to the soil and groundcover within the ephemeral stream area.	S	276	62	172	13	29	85 ± 4	77 ± 10	88 ± 5	71 ± 22	76 ± 1
Mark SMZs perimeter clearly using paint, flagging, or other means.	S	558	50	330	108	70	58 ± 4	30 ± 12	73 ± 5	34 ± 9	45 ± 1
Avoid roads, skid trails, decks, and portable sawmills inside the SMZ.	S	547	54	332	94	67	89 ± 3	67 ± 12	93 ± 3	80 ± 8	94 ±
Keep roads, skid trails, decks, and portable sawmills at least 10 feet away from the stream when placement in SMZ is unavoidable.	S	53	26	4	3	20	76 ± 11	77 ± 15	76 ± 32	57 ± 37	67 ± 1
Limit heavy equipment use within 10 feet of the edges of streams and waterbodies.	S	527	57	299	106	65	87 ± 3	75 ± 11	93 ± 3	71 ± 9	90 ±
Maintain approximately half of the pre-harvest vegetative canopy cover within the SMZ.	S	561	61	315	109	76	83 ± 3	74 ± 11	91 ± 3	61 ± 9	85 ±
Minimize disturbance to the mid- level and understory if removing significant overstory.	S	414	41	265	70	38	89 ± 3	67 ± 14	93 ± 3	80 ± 9	93 ±
Allow no more than 20% evenly distributed bare soil surface within the SMZ.	0	475	46	279	103	47	94 ± 2	92 ± 8	95 ± 3	84 ± 7	94 ±
Fell and remove trees away from the stream or waterbody.	S	552	44	334	108	66	89 ± 3	67 ± 13	90 ± 3	88 ± 6	96 ±
Avoid gouging the soil in a manner that could funnel runoff and transport sediment to the waterbodies.	S	572	51	338	107	76	92 ± 2	84 ± 10	94 ± 3	83 ± 7	98 ±
Service and refuel equipment outside of the SMZ, unless mechanical failure requires repair. Control fluids as needed.	S	75	11	52	9	3	98 ± 4	87 ± 20	97 ± 6	85 ± 22	72 ± 3
Keep logging debris out of stream or remove promptly if introduced when operating in the SMZ (not at crossing).	S	567	60	331	108	68	88 ± 3	66 ± 12	90 ± 3	86 ± 7	93 ±
Wrap SMZ around the head of the intermittent or perennial stream, at the ephemeral transition.	S	199	24	126	32	17	86 ± 5	61 ± 18	89 ± 6	95 ± 9	67 ± 2
SMZ width sufficient to filter upslope pollutants and prevent stream or waterbody sedimentation/contamination.	S	539	55	311	106	67	91 ± 2	66 ± 12	95 ± 2	90 ± 6	87 ±

SMZ width sufficient to provide stream shade and prevent adverse temperature fluctuations.	S	528	52	311	106	59	87 ± 3	77 ± 11	92 ± 3	75 ± 8	84 ± 9
"N/A" indicates that an instance of that	t individ	dual BMP in	that ecoreg	ion was not	observed d	uring the su	rvey				
S: Statewide, M: Mountains, P: Piedm	nont, SI	P: Southeas	tern Plains,	C: Mid-Atla	ntic Coasta	l Plain					

Site Preparation and Reforestation

Table 57. Implementation of BMPs fo	r Site P	reparatio	n and Re	forestatio	n by Regi	ion										
			BMP	Implemer	ntation				rly Impler O RISK to			li	mproperly & I	/ Impleme		Р
BMPs for Site Prep	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
									%							
Overall		97	N/A	86	100	100	100	N/A	100	100	100	0	N/A	0	N/A	N/A
Minimize the amount of soil that is disturbed by the equipment blade/rake and avoid uprooting leftover trees and stumps.	0	100	N/A	100	N/A	100	100	N/A	100	N/A	100	N/A	N/A	N/A	N/A	N/A
Prevent the movement of significant amounts of soil into debris piles.	S	100	N/A	100	N/A	100	100	N/A	100	N/A	100	N/A	N/A	N/A	N/A	N/A
Minimize the removal of surface organic matter.	0	100	N/A	100	N/A	100	100	N/A	100	N/A	100	N/A	N/A	N/A	N/A	N/A
Maintain existing debris and groundcover within ephemeral drains or dry gullies.	0	100	N/A	100	N/A	100	100	N/A	100	N/A	100	N/A	N/A	N/A	N/A	N/A
Keep equipment out of the SMZ or riparian buffers.	S	100	N/A	N/A	N/A	100	100	N/A	N/A	N/A	100	N/A	N/A	N/A	N/A	N/A
Set windrows along the land's topographic contour.	S	75	N/A	0	N/A	100	100	N/A	N/A	N/A	100	0	N/A	0	N/A	N/A
Avoid gouging the soil surface in a manner that could funnel runoff and transport sediment into nearby waterbodies.	S	100	N/A	100	N/A	100	100	N/A	100	N/A	100	N/A	N/A	N/A	N/A	N/A
Dispose of seedling bags, boxes, and culled seedlings appropriately. Do not place in or near streams and waterbodies.	0	100	N/A	100	100	N/A	100	N/A	100	100	N/A	N/A	N/A	N/A	N/A	N/A
			Highe	er % is Op	otimal			Highe	er % is O _l	ptimal			Lowe	<u>er</u> % is 0 ₁	otimal	

[&]quot;N/A" indicates that an instance of that individual BMP in that ecoregion was not observed during the survey

S: Statewide, M: Mountains, P: Piedmont, SP: Southeastern Plains, C: Mid-Atlantic Coastal Plain

BMPs for Site Preparation and Reforestation			Sa	mple Size	(n)	BMP Implementation Rate & 95% Confidence Interval						
	AU	S	М	Р	SP	С	S	М	Р	SP	С	
Overall		30	0	7	1	22	91 ± 11	N/A	73 ± 28	60 ± 44	93 ± 12	
Minimize the amount of soil that is disturbed by the equipment blade/rake and avoid uprooting leftover trees and stumps.	0	4	0	1	0	3	76 ± 32	N/A	60 ± 44	N/A	72 ± 36	
Prevent the movement of significant amounts of soil into debris piles.	S	6	0	1	0	5	80 ± 28	N/A	60 ± 44	N/A	78 ± 30	
Minimize the removal of surface organic matter.	0	4	0	1	0	3	76 ± 32	N/A	60 ± 44	N/A	72 ± 36	
Maintain existing debris and groundcover within ephemeral drains or dry gullies.	0	2	0	1	0	1	67 ± 40	N/A	60 ± 44	N/A	60 ± 44	
Keep equipment out of the SMZ or riparian buffers.	S	5	0	0	0	5	78 ± 30	N/A	N/A	N/A	78 ± 30	
Set windrows along the land's topographic contour.	S	4	0	1	0	3	63 ± 34	N/A	40 ± 44	N/A	72 ± 36	
Avoid gouging the soil surface in a manner that could funnel runoff and transport sediment into nearby waterbodies.	S	3	0	1	0	2	72 ± 36	N/A	60 ± 44	N/A	67 ± 40	
Dispose of seedling bags, boxes, and culled seedlings appropriately. Do not place in or near streams and waterbodies.	0	2	0	1	1	0	67 ± 40	N/A	60 ± 44	60 ± 44	N/A	

Chemicals, Fluids, and Solid Waste

Table 59. Implementation of BMPs for	r Chemi	cals, Flui					u Ooliu									
			BMP	Implemer	ntation				rly Impler O RISK to			lı	mproperly & l	Impleme		Р
BMPs for Chemicals, Fluids, and Solid Waste	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
		%														
Overall		77	71	82	76	68	100	100	99	100	100	6	0	7	5	10
Dispose of chemical containers properly.	0	0	N/A	N/A	N/A	0	N/A	N/A	N/A	N/A	N/A	0	N/A	N/A	N/A	0
Store garbage and waste in a container (or bag), empty/replace as needed, and store to prevent spillage or vandalism.	0	65	50	73	70	55	100	100	100	100	100	0	0	0	0	0
Empty waste containers once they are full.	0	67	100	50	100	100	100	100	100	100	100	0	N/A	0	N/A	N/A
Secure the waste bin after hours to prevent accidental tipping or vandalism.	0	60	50	69	0	50	100	100	100	N/A	100	0	0	0	0	0
Do not burn or bury garbage and trash on-site.	0	87	92	88	77	90	100	100	100	100	100	0	0	0	0	0
Equipment, vehicles, and machinery free of leaking fluids. No stains on the ground that would indicate leak.	0	78	67	83	74	75	100	100	100	100	100	19	0	22	20	50
Clean equipment with water - not degreasers or detergents.	0	100	N/A	N/A	N/A	100	100	N/A	N/A	N/A	100	N/A	N/A	N/A	N/A	N/A
Designate area for equipment servicing and fueling on level ground away from streams and waterbodies.	0	100	100	100	100	100	100	100	100	100	100	N/A	N/A	N/A	N/A	N/A
Service and fuel equipment at least 100 feet from streams, waterbodies, ditches, and ephemeral drainages.	0	92	100	100	83	75	100	100	100	100	100	0	N/A	N/A	0	0
Service equipment in a way that minimizes potential for fluids to enter waterbodies or the groundwater.	0	83	100	92	80	50	100	100	100	100	100	50	N/A	100	0	50
Keep fluid spill, containment, and clean-up tools and materials on-site (e.g., hose clamps, extra empty containers, absorbent material/pads, plastic sheeting, etc.)	0	72	50	67	100	100	100	100	100	100	100	0	0	0	N/A	N/A
Keep fluids secure in labeled containers that control or minimize leakage or spillage.	0	65	58	70	56	71	100	100	100	100	100	0	0	0	0	0
Use appropriate containers to store oils, fuels, and other fluids - minimizing leakage/spillage.	0	98	100	100	88	100	98	100	96	100	100	0	N/A	N/A	0	N/A
"N/A" indicates that an instance of tha		LUDIAD		er % is Op			distribute of the		er % is O	otimal			Lowe	<u>er</u> % is O _l	otimal	

[&]quot;N/A" indicates that an instance of that individual BMP in that ecoregion was not observed during the survey S: Statewide, M: Mountains, P: Piedmont, SP: Southeastern Plains, C: Mid-Atlantic Coastal Plain

BMPs for Chemicals, Fluids, and			Sa	ample Size	(n)	BMP Implementation Rate & 95% Confidence Interval							
Solid Waste	AU	S	М	Р	SP	С	S	М	Р	SP	С		
Overall		447	77	229	79	62	77 ± 4	70 ± 10	81 ± 5	75 ± 9	67 ± 11		
Dispose of chemical containers properly.	0	6	0	0	0	6	20 ± 28	N/A	N/A	N/A	20 ± 28		
Store garbage and waste in a container (or bag), empty/replace as needed, and store to prevent spillage or vandalism.	0	65	14	30	10	11	64 ± 11	50 ± 23	71 ± 15	64 ± 26	53 ± 25		
Empty waste containers once they are full.	0	9	1	6	1	1	62 ± 27	60 ± 44	50 ± 31	60 ± 44	60 ± 44		
Secure the waste bin after hours to prevent accidental tipping or vandalism.	0	25	6	16	1	2	59 ± 18	50 ± 31	65 ± 21	40 ± 44	50 ± 41		
Do not burn or bury garbage and trash on-site.	0	67	12	32	13	10	85 ± 9	82 ± 20	83 ± 13	71 ± 22	79 ± 23		
Equipment, vehicles, and machinery free of leaking fluids. No stains on the ground that would ndicate leak.	0	95	15	53	19	8	77 ± 8	63 ± 22	81 ± 10	70 ± 19	67 ± 27		
Clean equipment with water - not degreasers or detergents.	0	1	0	0	0	1	60 ± 44	N/A	N/A	N/A	60 ± 44		
Designate area for equipment servicing and fueling on level ground away from streams and waterbodies.	0	8	1	2	4	1	84 ± 24	60 ± 44	67 ± 40	76 ± 32	60 ± 44		
Service and fuel equipment at least 100 feet from streams, waterbodies, ditches, and ephemeral drainages.	0	24	3	11	6	4	86 ± 14	72 ± 36	87 ± 20	70 ± 30	63 ± 34		
Service equipment in a way that minimizes potential for fluids to enter waterbodies or the groundwater.	0	24	2	13	5	4	79 ± 16	67 ± 40	83 ± 19	67 ± 32	50 ± 35		
Keep fluid spill, containment, and clean-up tools and materials on-site (e.g., hose clamps, extra empty containers, absorbent material/pads, plastic sheeting, etc.)	0	18	2	12	3	1	68 ± 20	50 ± 41	63 ± 24	72 ± 36	60 ± 44		
Keep fluids secure in labeled containers that control or minimize eakage or spillage.	0	55	12	27	9	7	64 ± 12	56 ± 24	68 ± 17	54 ± 27	64 ± 29		
Use appropriate containers to store pils, fuels, and other fluids - minimizing leakage/spillage.	0	50	9	27	8	6	95 ± 7	85 ± 22	94 ± 10	75 ± 26	80 ± 28		

Fire Management

BMPs for Fire Management		BMP Implementation							rly Impler O RISK to		Improperly Implemented BMP & RISK to WQ					
	AU	S	М	Р	SP	С	S	М	Р	SP	С	S	М	Р	SP	С
Overall		84	N/A	71	100	N/A	100	N/A	100	100	N/A	0	N/A	0	N/A	N/A
Construct firelines only as deep as necessary.	0	50	N/A	50	N/A	N/A	100	N/A	100	N/A	N/A	0	N/A	0	N/A	N/A
Construct firelines only as wide as necessary.	0	75	N/A	75	N/A	N/A	100	N/A	100	N/A	N/A	0	N/A	0	N/A	N/A
Minimize using soil disturbing tractor-plow firelines.	0	50	N/A	50	N/A	N/A	100	N/A	100	N/A	N/A	0	N/A	0	N/A	N/A
Construct firelines that minimize erosion and runoff.	S	67	N/A	67	N/A	N/A	100	N/A	100	N/A	N/A	0	N/A	0	N/A	N/A
Construct firelines along the contour and avoid straight uphill/downhill placement where possible.	S	100	N/A	100	N/A	N/A	100	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fireline slope 25% or less.	S	100	N/A	100	N/A	N/A	100	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Minimize accelerated erosion into waterbodies.	S	100	N/A	N/A	100	N/A	100	N/A	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A
Clear streams and ditches of debris.	S	100	N/A	N/A	100	N/A	100	N/A	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A
Consider site and weather conditions in order to protect water quality.	0	100	N/A	100	100	N/A	100	N/A	100	100	N/A	N/A	N/A	N/A	N/A	N/A
Retain duff layer on the soil while meeting prescribed burn goals.	0	100	N/A	100	100	N/A	100	N/A	100	100	N/A	N/A	N/A	N/A	N/A	N/A
Keep high intensity burns out of the SMZ unless suitable WQ measures taken.	S	100	N/A	N/A	100	N/A	100	N/A	N/A	100	N/A	N/A	N/A	N/A	N/A	N/A
Use natural or in-place barriers to minimize fireline construction.	S	100	N/A	100	100	N/A	100	N/A	100	100	N/A	N/A	N/A	N/A	N/A	N/A

[&]quot;N/A" indicates that an instance of that individual BMP in that ecoregion was not observed during the survey S: Statewide, M: Mountains, P: Piedmont, SP: Southeastern Plains, C: Mid-Atlantic Coastal Plain

BMPs for Fire Management			Sa	ample Size	(n)	BMP Implementation Rate & 95% Confidence Interva						
	AU	S	М	Р	SP	С	S	М	Р	SP	С	
Overall		38	0	21	17	0	81 ± 12	N/A	68 ± 19	91 ± 14	N/A	
Construct firelines only as deep as necessary.	0	4	0	4	0	0	50 ± 35	N/A	50 ± 35	N/A	N/A	
Construct firelines only as wide as necessary.	0	4	0	4	0	0	63 ± 34	N/A	63 ± 34	N/A	N/A	
Minimize using soil disturbing tractor-plow firelines.	0	4	0	4	0	0	50 ± 35	N/A	50 ± 35	N/A	N/A	
Construct firelines that minimize erosion and runoff.	S	3	0	3	0	0	57 ± 37	N/A	57 ± 37	N/A	N/A	
Construct firelines along the contour and avoid straight uphill/downhill placement where possible.	S	1	0	1	0	0	60 ± 44	N/A	60 ± 44	N/A	N/A	
Fireline slope 25 percent or less.	S	2	0	2	0	0	67 ± 40	N/A	67 ± 40	N/A	N/A	
Minimize accelerated erosion into waterbodies.	S	1	0	0	1	0	60 ± 44	N/A	N/A	60 ± 44	N/A	
Clear streams and ditches of debris.	S	1	0	0	1	0	60 ± 44	N/A	N/A	60 ± 44	N/A	
Consider site and weather conditions in order to protect water quality.	0	2	0	1	1	0	67 ± 40	N/A	60 ± 44	60 ± 44	N/A	
Retain duff layer on the soil while meeting prescribed burn goals.	0	2	0	1	1	0	67 ± 40	N/A	60 ± 44	60 ± 44	N/A	
Keep high intensity burns out of the SMZ unless suitable WQ measures taken.	S	4	0	0	4	0	76 ± 32	N/A	N/A	76 ± 32	N/A	
Use natural or in-place barriers to minimize fireline construction.	S	10	0	1	9	0	86 ± 21	N/A	60 ± 44	85 ± 22	N/A	

[&]quot;N/A" indicates that an instance of that individual BMP in that ecoregion was not observed during the survey

S: Statewide, M: Mountains, P: Piedmont, SP: Southeastern Plains, C: Mid-Atlantic Coastal Plain