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PORTABLE TIMBER BRIDGE DESIGNS FOR
TEMPORARY FOREST ROADS

S.E. Taylor G.L. Murphy'
Assoc. Member

ABSTRACT

Efforts to reduce the environmental impacts from forest operations point to the need
for improved stream crossing technology on temporary forest roads and skid trails. New
designs of timber bridges appear to be cost-effective alternatives for portable stream crossing
structures. Bridge design criteria and example designs for portable, longitudinal glued-
laminated and stress-laminated timber bridges are discussed in this paper.

INTRODUCTION

Increasing concerns over environmental impacts from forest operations such as timber
harvesting are leading to many new recommendations for forest practices. Most of these
recommendations, which are called Best Management Practices (BMP’s), are intended to
reduce the potential for water pollution. Several studies in various states have shown that
timber harvesting and the associated road construction are major contributors to nonpoint
source pollution of forest streams. Harper (1979) listed several parameters related to
nonpoint source pollution from silvicultural activities and indicated that reducing sediment
in the stream should have one of the highest priorities for research. Rothwell (1983) and
Swift (1985), in separate studies on forest roads and skid trails, found that stream crossings
were the most frequent sources of erosion and sediment introduction into the stream.

Therefore, there is a need to develop improved methods of stream crossings for forest roads
and skid trails.

Fords and corrugated-metal or concrete culverts have been used as stream crossing
structures on logging roads for many years. Using fords results in a continuous introduction
of sediment into the stream as machines drive across the stream. While culverts alleviate this
problem, there appear to be considerable sediment loads introduced into the stream during
the excavation and fill work that accompanies culvert installation. Results reported by Swift
(1985) showed that the cumulative amount of soil placed in a stream at the road-stream
crossing during the construction period was over ten times greater than during the logging
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Some states are beginning to recommend the use of temporary or portable bridges as
alternatives to fords or culverts. The rationale behind this recommendation is that the
additional soil disturbance during installation and removal of a culvert or the use of a ford
introduces excessive sediment into the stream. Indeed, Swift (1985) presented data that
showed that most sedimentation from stream crossings occurs during the construction phase.
This concern over sedimentation is of even greater importance when guidelines dictate that
culverts or bridges be removed from intermittent-use or temporary roads after they are
closed. In the case of a culvert, its removal may add a significant amount of sediment to the
stream. In fact, these environmental concerns are the reason that many loggers will develop
their timber harvesting plans so that they will not have to cross streams. However, this can
be very costly due to the additional road building costs, which may range from $500 to
$3,000 per mile of bare earth road in the southeastern states. Also, the additional road
construction adds to the erosion and sedimentation problem. In some cases, landowners
have stated that they have not even attempted to harvest small tracts of merchantable timber
because the cost of the timber did not offset installing a culvert or permanent bridge and
there was no other way to access the tract.

The installation and removal of a portable bridge, however, may involve little or no
disturbance of the stream banks, resulting in very little additional sedimentation of the
stream. Also, in the situations where additional roads would have been required or the
timber would not have been harvested, the purchase price of a portable bridge could be
offset by reducing road building costs, reducing transportation costs due to shorter haul
distances, and increased income from harvesting and selling the timber. Portable bridges for
spans up to 40 ft. appear to be feasible for most temporary stream crossings in timber
harvesting operations, especially in the southern states.

Temporary Stream Crossing Structures
Steel Structures

Interest in portable stream crossing structures is currently very high due to these
environmental issues. Mason (1990) gave an extensive description of many types of portable
or prefabricated stream crossings that have been used in logging operations. Her discussion
included pipe fascine systems, railroad flatcars, modular steel girder bridges with steel or
timber decks, bridges made of steel truss panels (similar to the military’s Bailey bridges),
hinged steel bridges, and trailer- or armored military vehicle-launched bridges. These steel
bridges were designed for spans ranging from 20 ft. up to 250 ft. Although the railroad
flatcars and some of the perfabricated steel girder bridges have been used in logging
operations, most of these bridges require heavy construction equipment for installation and
removal due to their weight. Also, since they are prefabricated, their size may make
transporting them to the site difficult. In addition, even though the military’s Bailey bridge is
lighter and can be assembled and installed with hand labor, this type of bridge does not
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35 ft. long. The installed cost of the bridge was approximately $11,500 (or $27/£6).
However, its total weight was approximately 78,000 lbs. Although this bridge was very cost
effective, its relatively high weight required the use of heavy construction equipment for
installation and removal. Therefore, this bridge is probably not suitable as a portable bridge
for most loggers.

Timber Structures

Mason (1990) also discussed several timber bridge designs including log stringer
bridges, modular timber truss bridges, and longitudinal glued-laminated or stress-laminated
bridges. Although the log stringer bridge has been used successfully for many years, the
recent advances in timber bridge technology include several designs that should be easily
adapted for use as portable bridges. Another "non-engineered" type of portable bridge was
described by Bihun (1991). This timber bridge design is 12 ft. long and 12 ft. wide. It
consists of 5 nominal 8x10 in. mechanically-laminated stringers that are 12 ft. long. The
stringers are fabricated by bolting together 4 nominal 2x10’s. Twelve-ft.-long 2x10 planks are
laid flatwise on top of the stringers (perpendicular to the stringers) and 3x12 longitudinal
runners are placed on top of the planks. This design has been constructed with unseasoned
Eastern hemlock lumber and has been used to carry skidder traffic across small streams in
Vermont. Although Bihun (1991) stated that the bridge had been field tested, this design
probably has a limited range of vehicle loads that it can safely carry. Other loggers have also
used timber dragline mats to carry skidder traffic over relatively short spans.

Design procedures for modern timber bridges can be found in the manual by Ritter
(1990). Probably the most promising designs for spans up to 35 ft. consist of longitudinal
glued-laminated (glulam) or stress-laminated decks that are placed across the stream. These
longitudinal deck designs are relatively simple to construct, somewhat lightweight, and have
comparatively thin cross sections. They can be prefabricated into large sections that can be
quickly and easily installed at the stream crossing site. These bridges can be installed with
typical forestry equipment, such as hydraulic knuckleboom loaders or skidders, without the
need for heavy construction equipment. Also, it may be possible to install these bridges
without operating the equipment in the stream and with a minimum of soil movement
around the structure. This reduction in site disturbance should lead to a reduced sediment
load on the stream.

Hassler et al. (1990) discussed the design, fabrication, and testing of a portable
longitudinal stress-laminated deck bridge for truck traffic on logging roads. Their bridge was
constructed of untreated, green, mixed hardwoods. It was 16 ft. wide, 40 ft. long, 10 in.
deep, and was fabricated in two 8-ft-wide modules. They estimated that the cost of the
bridge was approximately $7,000 excluding transportation costs to the site. It was installed
to assist in timber harvesting activities in the West Virginia University Forest. They placed
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moving a knuckleboom loader to the edge of the streambank. Therefore, the use of
forwarders or skidders may be necessary.

Forwarders are vehicles that are equipped with smaller knuckleboom loaders and
racks in which to carry wood. Forwarder payloads may be up to approximately 25,000
pounds. Although knuckleboom loaders are mounted on forwarders, they are smaller and
therefore may not be able to lift payloads as large as the dedicated log loaders. However,
their ability to carry bridge components in their racks may make them useful in installing
smaller types of bridges. The skidder also may be used to drag bridge sections or
components to the stream crossing. The weight of bridge section or components should be
no more than approximately 10,000 pounds for many skidders to successfully transport them
to the site. The maximum payload will depend on skidder or forwarder size. Regardless of
the equipment used to lift or drag the bridge into place, provisions should be made to attach
wire ropes, nylon straps, or chains to the bridge components so that they can be lifted
without damaging the wood. The most convenient methods to transport portable timber
bridges would be to use truck and trailer combinations that most loggers own. Therefore, it
is important to design the bridge so that it can be broken down into sections for transport on
logging trucks. Also, it may be possible to temporarily place the entire bridge or bridge
sections on wheels and tow it to the site. However, this may be difficult to do on roads or
skid trails that are still under construction.

Design Procedures

In addition to the publication by Ritter (1990), design procedures for timber bridges
can be found in the AASHTO Standard Specifications for Highway Bridges (AASHTO, 1990,
1991). Little previous research has been conducted on appropriate design procedures for
portable timber bridges on temporary forest roads. Knab et al. (1977) studied military theater
of operations glulam bridges with design lives of 2 to 5 years. They concluded that using
civilian design procedures, which are generally based on design lives of 50 to 75 years with
relatively high levels of reliability, could result in unnecessarily conservative and
uneconomical designs for the limited performance needs of theater of operations bridges.
Using results from reliability analyses, they developed new design procedures and
modification factors for allowable stresses that would result in adequate levels of structural
safety for glulam stringer bridges. They concluded that a modification factor could be used
that would result in increases for allowable stresses for bending, shear, and compression
(both parallel- and perpendicular-to-grain) for these temporary military bridges. They did
not, however, recommend changes in modulus of elasticity over those found in design data
published by the American Institute of Timber Construction (AITC, 1987).

Other work by GangaRao and Zelina (1988) examined the design specifications for
low volume civilian roads. They also concluded that many bridges on low volume roads
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using the HS20 loads for design of a skidder bridge, for example, may be overly
conservative. However, it may be difficult to insure that the bridge is not used for truck
traffic at some point during its life. Therefore, the use of the HS20 load configuration may be
the safest assumption for most cases, even though it may result in uneconomical bridge
designs for some forestry equipment traffic.

Deflection Criteria

Ritter (1990) provided a good discussion of timber bridge deflection criteria.
Deflection in bridge members is important for serviceability, performance, and aesthetics. In
general, excessive deflections cause fasteners to loosen and wear surfaces, such as asphalt or
concrete, to crack. Also, bridges that sag below a level plane can give the public a perception
of structural inadequacy. Excessive deflections from moving vehicle loads also produce
vertical movement and vibration that may annoy motorists. Since most portable bridges will
not need an asphalt or concrete wear surface, concerns over deflection should not be as great
as in highway bridges. However, the users’ perception of the bridge may be a concern to the
designer. Ritter (1990) noted that others have used deflection criteria ranging from L/200 to
L/1200. He recommended a maximum deflection of L/360 for short-term loads and a
maximum deflection criteria of L/240 for the combination of applied loads and dead load. It
may be possible to relax these deflection criteria slightly in the case of a portable bridge.
However, it may be more appropriate for the engineer to consider the relationship between
the bridge span and the predicted deflection of the bridge in absolute terms instead of just
using a criterion like L/240. For example, for a bridge with a 25 ft. span, L/360, L/300,
L/240, and /180 would be 0.83 in., 1 in., 1.25 in., and 1.67 in., respectively. In the case of
some portable bridges, the designer may make the judgement that a deflection of 1.67 in.
would not be excessive for the given bridge configuration, vehicle loads, and daily traffic for
which it was designed.

EXAMPLE BRIDGE DESIGNS

Longitudinal Glued-Laminated Deck

Longitudinal glued-laminated deck bridges are composed of vertically-glued-
laminated assemblies that are placed side by side across the stream. They are practical for
clear spans up to 35 ft. The panels are typically fabricated in 48-in. widths and depths up to
10.5 in. for southern pine or 10.75 in. for western species. The panels can be interconnected
with steel dowels or fasteners, but they are more commonly designed with transverse
stiffener beams below the deck. These stiffener beams, which are usually bolted to the
panels, help distribute wheel loads among the panels. The primary advantage to this type of
bridge design is that it can be prefabricated in a few sections before shipping to the bridge
site. All necessary cuts and holes can be made before preservative treatment.
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research purposes and does not necessarily reflect the most economical width or length. A
typical bridge used for log truck traffic would probably only need to be approximately 12 ft.
wide and would therefore cost even less than the current bridge. Fabrication of this bridge
has just been completed, but it has not been installed yet. Before the bridge is moved to the
bridge site, the curb rails can be installed to minimize the amount of erection time at the site.
The bridge can be transported to the site on a typical log trailer or equipment trailer. Each of
the panels weighs approximately 5,500 pounds and should therefore be easily lifted with
most knuckleboom loaders. Many types of articulated, rubber-tired front-end loaders should
also be able to lift the panels. If necessary, the panels can be maneuvered into place using a
grapple or cable skidder. Also, if the knuckleboom loader cannot be used at the stream
crossing site, a skidder can be used to pull the panels to the stream crossing. A skidder also
can be used to set the panels in place by securing a block and tackle on the opposite side of
the stream and winching the panels across the stream. Installation or removal of this bridge
can be accomplished in less than one day.

Longitudinal Stress-Laminated Deck

The concept of stress-laminating wood bridge decks began in Canada and has now
been used in the construction of many permanent bridges in the U.S. In this system, vertical
laminations of dimension lumber are stressed together with high strength steel rods. The
rods squeeze the laminations together so that the stressed deck acts as a solid wood plate.
The second portable timber design discussed here was designed by engineers in Region 8 of
the USDA Forest Service and uses a longitudinal stress-laminated deck for its superstructure.
The Forest Service also has a need for low-cost/low impact bridges for temporary stream
crossings. In many cases, it is not economically feasible to construct and maintain permanent
bridges for timber sales or other forest management activities in the National Forest System.
To meet this need, engineers in Region 8 of the Forest Service have designed this portable
stress-laminated bridge. This bridge is designed for HS20 loadings and is intended for use
on temporary logging roads. Sketches of the bridge are shown in Figures 4 through 6.

The bridge consists of two separate stress-laminated panels 4.5 ft. wide. The panels
are constructed with nominal 2x10 lumber for spans ranging from 16 ft. to 24 ft. Nominal
2x12 lumber is used for spans up to 32 ft. Each panel is stressed separately and then placed
adjacent to the other panel with a 2 ft. space between panels. The overall width of the
complete bridge is 11 ft. Solid sawn 6x6 curb rails run the length of the bridge. A unique
design is used for a drop-in 3x12 filler panel in the space between the two deck panels. This
filler panel primarily covers the gap between the two panels, but it also provides additional
continuity between the deck panels. At each end of the bridge, the deck panels are placed on
top of a 14-ft.-long solid sawn 12x12 sill, which sits directly on the stream bank. A minimum
of 5 ft. is recommended between the edge of the sill and the edge of the stream. All timber
components should be treated with creosote or pentachlorophenol in accordance with AWPA
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Additional work is also needed to examine alternatives to other design practices.
Stress-laminated designs that utilize laminated veneer lumber for bridge components are also
attractive options for portable bridges. Many other design problems need to be explored.
One example is in the use of stiffener beams for the glulam deck bridge. Alternatives to the
stiffener beams that would allow quicker assembly or reduce the need to work under the
bridge deck to attach the stiffener beams would make the system more attractive to the
logger or road construction crew. Also, the use of only two longitudinal glulam panels in a
manner similar to that used in the stress-laminated deck design is a possibility that needs
additional study.

Cost Effectiveness

Detailed lifecycle cost information is needed to determine the economic feasibility of
this concept. However, only initial cost data are available at this time. The portable hinged
steel bridge designed for truck traffic, which was discussed earlier, has an estimated cost of
$13,000 (or $43/ft* for a bridge that is 11.5 ft. wide and 26 ft. long) when shipped to states in
the southern U.S. The two portable timber bridges discussed here have estimated costs of $
16,500 (or $41/£2 for the glulam bridge that is 16 ft. wide with an effective span of 25 ft.)
and $ 14,000 (or $40/ft for the stress-laminated bridge that is 11 ft. wide with a span of 32
ft.). The glulam bridge would probably cost approximately $13,000 if its width were reduced
to 12 ft. Although the concrete bridge had a very low installed cost, its extreme weight
prohibits it from being used effectively as a portable bridge. In cases where loggers build
additional roads to prevent crossing streams, they would only have to build an additional 26
miles of road to equal the cost of purchasing a $13,000 portable bridge (using road
construction costs of $500 per mile). This estimate does not account for the additional losses
in productivity due to increased travel times when detouring around the stream crossing.
Therefore, many loggers could probably pay for the investment in a portable bridge very
quickly. In some cases, landowners have stated that they may not even harvest small tracts
of merchantable timber because the cost of the timber does not offset installing a culvert or
permanent bridge and there was no other way to access the tract. In these instances, the
purchase price of a portable bridge could also be offset quickly by the loss in revenues due to
not harvesting and selling the timber. Therefore, these portable bridge designs appear to be
cost-effective stream crossing options for temporary forest roads. In addition, the cost of
timber bridges is competitive with that of steel structures.

SUMMARY AND CONCLUSIONS

New recommendations for forest practices are the result of pressure on the forest
products industry to reduce environmental impacts from forest operations. One primary area
of concern is improving water quality in forest streams. Construction of roads and the
associated stream crossings during timber harvesting operations are one of the leading causes
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to 32 ft. Since the glulam and stress-laminated panels each weigh approximately 5,500
pounds and 6,500 pounds, respectively, both designs can be installed and removed with
knuckleboom log loaders or log skidders. Also, each bridge design can be transported on a
typical log truck and trailer. Further research is underway to document the performance and
longevity of these bridge designs. Additional research on bridges designed specifically for
forestry equipment loads is also needed.

Cost comparisons between the portable timber bridge designs discussed here and
commercial portable steel bridges show that the timber bridges may be cost effective
solutions for portable stream crossings. The estimated costs for the glulam and stress-
laminated bridges are approximately $41/ft* and 40/ft}, respectively, while the portable steel
bridge may cost approximately $43/ft* when shipped to the southern states. Additional
research is needed to fully document the lifecycle costs and structural performance of these
various designs of portable timber bridges. However, it appears that with modern timber
bridge technology, portable timber bridges for temporary forest roads and skid trails are
economical stream crossing structures.
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Table 1. Example design inoments and shear forces for a 30-ft.-span bridge based

on various types of forest harvesting equipment. The truck loads for
AASHTO H20 and HS20 are also shown.

Approximate Maximum
Loaded Moment
Overall Total for the Maximum
Wheelbase Weight Vehicle Shear
Vehicle Type (ft) (Ib) (in. Ib) (1Ib)
ﬁg‘t‘o?gerf dZOB 19.6 33,450 157.825 25,251
g’g’;ﬁfeﬁa‘ggf 6.8 15,350 102,233 13,361
%f;il‘;pgg;ifH 9.0 42,405 270,332 36,044
gi;;ﬁ‘g;’kisjger 107] 27000 151,470 22 680
]é’:;}eDgfirj di‘f_OD 9.6 21,700 127,555 18,580
g’g’;}gggﬁi‘i 12.1 34,500 181,448 28,246
Eﬁ;ﬁ;‘g‘;ﬂ C6D 173 38,390 126,262 27,476
Hzlmsojf O yariable 40,000 246,620 36,260
AACQ
ES;JHT I‘IO variable 72,000 282,140 49,600
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Plan view of the longitudinal glulam deck bridge.

Figure 2.
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Elevation view of the longitudinal stress-laminated timber deck bridge.

Figure 4.
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Figure 6. Section view of the longitudinal stress-laminated timber deck bridge.



